首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32089篇
  免费   8414篇
  国内免费   13597篇
化学   18698篇
晶体学   866篇
力学   6276篇
综合类   1157篇
数学   8180篇
物理学   18923篇
  2024年   81篇
  2023年   971篇
  2022年   1118篇
  2021年   1011篇
  2020年   944篇
  2019年   1129篇
  2018年   832篇
  2017年   1129篇
  2016年   1203篇
  2015年   1214篇
  2014年   2799篇
  2013年   2151篇
  2012年   2255篇
  2011年   2561篇
  2010年   2374篇
  2009年   2615篇
  2008年   3092篇
  2007年   2343篇
  2006年   2339篇
  2005年   2490篇
  2004年   2344篇
  2003年   2331篇
  2002年   1924篇
  2001年   2005篇
  2000年   1495篇
  1999年   1079篇
  1998年   1042篇
  1997年   966篇
  1996年   893篇
  1995年   910篇
  1994年   855篇
  1993年   666篇
  1992年   660篇
  1991年   619篇
  1990年   663篇
  1989年   540篇
  1988年   147篇
  1987年   117篇
  1986年   78篇
  1985年   52篇
  1984年   23篇
  1983年   19篇
  1982年   13篇
  1981年   1篇
  1959年   6篇
  1934年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
由于单元应力属于局部性能约束, 导致相应的结构拓扑优化存在难以承受的大量约束条件; 尽管化整方法极大地减少了约束数量, 但是优化结果中有少数应力超限现象. 为此, 本文在应力约束的结构拓扑优化中, 瞄准克服应力超限和提高求解效率两个目标, 进行了探索. 提出了乘子法及序列二次规划(SQP)法两种解法, 首先在化整交融(即化整-集成)解法中的m方集成模型应用, 与一阶近似的移动渐近线(MMA)解法进行了求解效率对比. 然后, 在此基础上采用了效果最好的m方集成模型的SQP解法, 建立了求解应力约束下结构体积极小化模型(即s方模型), 将化整交融解法与以往单独的化整解法进行了对比. 结果表明: (1) m方集成模型的3种解法中, 乘子法及SQP法的求解效率远高于MMA法, SQP法的求解效率略高于乘子法; (2) 化整交融解法与化整解法相比, 虽然求解效率相当, 但化整交融解法完全避免了个别约束超限的现象, 在满足应力约束条件下, 得到的最优拓扑结构体积更小, 表现出更强的寻优能力.   相似文献   
2.
锡二硫族化合物可以通过改变硫和硒的含量来连续调控三元合金材料的带隙、载流子浓度等物理化学性质,在电子和光电子器件应用上具有巨大的潜力。本文采用化学气相沉积(CVD)技术可控地制备了不同元素组分的SnSxSe2-x(x=0,0.2,0.5,0.8,1.0,1.2,1.5,1.8,2.0)单晶纳米片。采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、能量色散X射线光谱(EDS)、透射电子显微镜(TEM)以及拉曼光谱等手段对SnSxSe2-x纳米片进行了综合表征。结果表明本方法成功实现了元素百分比可调的SnSxSe2-x单晶纳米片的可控制备。重点研究了依赖于元素百分比的SnSxSe2-x的拉曼特征谱,实验结果与基于密度泛函理论(DFT)的第一性原理计算得到的SnSxSe2-x的拉曼仿真谱高度吻合,理论计算结果较好地诠释了实验拉曼光谱发生变化的原因。本研究提供了一种元素百分比可调的三元SnSxSe2-x单晶纳米片的可控制备方法,同时对锡二硫族化合物的明确、无损识别提供了方案。  相似文献   
3.
采用计算流体力学(CFD)方法,研究了在不同开合情况下,受单体干扰建筑影响时大跨度开合屋盖结构的风压分布规律及风致干扰效应。首先采用TTU试验数据和风洞试验数据验证了CFD方法的准确性;然后研究了施扰建筑在不同条件下,目标大跨度开合屋盖表面的风压分布规律。研究结果表明:随着干扰建筑物与大跨度开合屋盖间距增大,结构表面的风压系数逐渐增大,遮挡效应减小;大跨度开合结构屋盖的开合情况对屋盖表面的风压系数的分布起着较为明显的影响作用;当周围存在干扰建筑时,大跨度开合屋盖的表面风压分布发生明显变化,风致干扰效应不容忽略。  相似文献   
4.
针对属性权重未知,且属性值为毕达哥拉斯犹豫模糊数(PHFN)的风险型多属性决策问题,考虑到决策者的有限理性行为,提出基于累积前景理论(CPT)和多准则妥协优化解(VIKOR)的决策方法。首先,定义PHFN的分散率,并构建优化模型确定属性权重。其次,将CPT融入PHFN环境,定义PHFN的价值函数,并结合决策权重函数计算方案在各属性下的综合前景值。进一步,构建综合前景值矩阵,在此基础上运用VIKOR法确定方案排序。最后,通过风险投资项目选择的应用案例说明所提方法是可行、有效的。  相似文献   
5.
本文基于实测的热力湍流探空数据,使用WR95方法识别低云的垂直结构,对比分析了低云与晴空天气下大气折射率结构参数Cn~2、气象条件和大气稳定度的平均统计结果.结果表明,低层薄云对Cn~2起伏变化的影响微乎甚微,仅仅表现出轻微增大的趋势,云底Cn~2相对于晴空天气平均增大1.6倍,云顶之上最大程度增大2.5倍.低层中厚云在云顶处Cn~2相对于晴空天气增大了3.80—6.61倍,且云顶区域Cn~2增大的幅度大于云底区域.云底区域大气湍流特性受到地面热力驱动与低云冷却的联合作用,沉降气流与地面向上气流发生了耦合,增强了风切变,Cn~2在这一高度附近也出现了增强.综合对比晴空和有云天气Cn~2大小可知,云对Cn~2的增强效应大致在10–16量级.一方面,风切变在云顶处或者云顶之上达到最大值;另一方面,因为云顶短波辐射增温和长波辐射冷却的共同作用,云顶之上会形成不同厚度的逆温层,致使云顶处位温变化率急剧增大,Brunt-V...  相似文献   
6.
手性是自然界的基本属性,在动植物生命活动、医药、农药及化学工业中发挥着重要作用。已上市药物中有一半以上是手性药物,正在开发的临床药物有约2/3药物是具有手性的。因此,手性化合物的光学纯度测定尤为重要。目前手性化合物光学纯度的测定方法以色谱法和光谱法为主,同时辅以其他方法。本文结合手性荧光识别与光学纯度分析中的研究成果,对色谱法、光谱法和其他光学纯度测定方法及其应用进行了综述,以期为手性药物及其中间体的光学纯度测定提供信息与参考。  相似文献   
7.
物理学是一门基础的自然科学,其中有许多概念抽象难懂,对学生思维结构水平的要求较高.为了更好地培养学生的物理科学思维,本文以"摩擦力"教学为例,以SOLO理论为基石,分析学生思维结构水平为核心,分层次安排教学活动.  相似文献   
8.
毛赫南  王晓工 《物理化学学报》2022,38(4):2004025-52
氧化石墨烯(GO)片的基面和边缘上存在大量的含氧官能团,能很好地分散在水中,因而具有很好的加工性和广阔的应用前景。在较高浓度范围下,GO水分散液中存在着强烈的竞争性相互作用,从而对流变行为产生较大影响。在本文中,通过稳态、动态等流变实验以及理论分析,研究了pH值、温度和不同的有机溶剂对GO分散液流变行为的影响。结果表明,降低pH值、适当增加温度以及加入吡啶均可促进GO水分散液从粘弹性液体到凝胶态的转变。利用DLVO (Deryagin-Landau-Verwey-Overbeek)理论,探讨了GO片之间的范德华作用力以及双电层排斥作用的相互关系,及其对流变性能的影响。通过群体平衡模型(PBE)分析了GO分散液的屈服应力与体积分数的正相关关系。同时,通过蠕变和松弛实验发现,高浓度的GO分散液中结构变化及流变行为在很多方面与高聚物相似,利用Poyting-Thomson模型能较好地拟合其粘弹性行为。上述研究结果为深入研究复杂的GO分散体系提供理论支撑和实验依据。  相似文献   
9.
卢浩然  魏雅清  龙闰 《物理化学学报》2022,38(5):2006064-57
通常认为缺陷加速黑磷的非辐射电子-空穴复合,阻碍器件性能的持续提高。实验打破了这一认识。采用含时密度泛函理论结合非绝热分子动力学,我们发现P-P伸缩振动驱动非辐射电子-空穴复合,使纳米孔修饰的单层黑磷的激发态寿命比完美体系延长了约5.5倍。这主要归因于三个因素。一,纳米孔结构不但没有在禁带中引入深能级缺陷,而且由于价带顶下移使带隙增加了0.22 eV。二,除了带隙增加,纳米孔减小了电子和空穴波函数重叠,并抑制了原子核热运动,从而使非绝热耦合降低至完美体系的约1/2。三,退相干时间比完美体系延长了1.5倍。前两个因素战胜了第三个因素,使纳米孔结构激发态寿命延长至2.74 ns,而其在完美体系中约为480 ps。我们的研究表明可以制造合理数量和形貌的缺陷,如纳米孔,降低黑磷非辐射电子-空穴复合,提高光电器件效率。这一研究对于理解和调控黑磷和其它二维材料的激发态性质有重要意义。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号