首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
力学   6篇
数学   8篇
  2022年   2篇
  2018年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2002年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
The initial plastic anisotropy parameters are conventionally determined from the Lankford strain ratios defined by rψ=ε22pψε33pψ (ψ being the direction of the loading path). They are usually considered as constant parameters that are determined at a given value of the plastic strain far from the early stage of the plastic flow (i.e. equivalent plastic strain of εeqp=0.2%) and typically at an equivalent plastic strain in between 20% and 50% of plastic strain failure (or material ductility). What prompts to question about the relevance of this determination, considering that this ratio does not remain constant, but changes with plastic strain. Accordingly, when the nonlinear evolution of the kinematic hardening is accounted for, the Lankford strain ratios are expected to evolve significantly during the plastic flow.In this work, a parametric study is performed to investigate the effect of the nonlinear kinematic hardening evolution of the Lankford strain ratios for different values of the kinematic hardening parameters. For the sake of clarity, this nonlinear kinematic hardening is formulated together with nonlinear isotropic hardening in the framework of anisotropic Hill-type (1948) yield criterion. Extension to other quadratic or non-quadratic yield criteria can be made without any difficulty. This parametric study is completed by studying the effect of these parameters on simulations of sheet metal forming by large plastic strains.  相似文献   
2.
3.
The analysis of mechanical structures using the Finite Element Method in the framework of large elastoplastic strain, needs frequent remeshing of the deformed domain during computation. Indeed, the remeshing is due to the large geometrical distortion of finite elements and the adaptation to the physical behavior of the solution. This paper gives the necessary steps to remesh a mechanical structure during large elastoplastic deformations with damage. An important part of this process is constituted by geometrical and physical error estimates. The proposed method is integrated in a computational environment using the ABAQUS/Explicit solver and the BL2D-V2 adaptive mesher. To cite this article: H. Borouchaki et al., C. R. Mecanique 330 (2002) 709–716.  相似文献   
4.
Ricerche di Matematica - This notes studies the inhomogeneous non-linear Schrödinger equations with a harmonic potential $$\begin{aligned} i\partial _tu +\Delta u-|x|^2u+|x|^{b}|u|^{p-1}u=0....  相似文献   
5.
6.
7.
We investigate the initial value problem for a semilinear damped Schrödinger equation with exponential growth nonlinearity in two space dimensions. We obtain global well‐posedness in the energy space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
基于微态方法的耦合韧性损伤的弹塑性本构模型   总被引:1,自引:1,他引:0  
基于广义连续介质力学提出了一个热力学一致性的耦合微态韧性损伤的弹塑性本构模型。该模型遵循Forest的微态方法,在有限变形中提出引入额外的微态损伤因子及其一阶梯度以考虑材料的内部特征尺度。通过广义虚功原理得到了微态损伤的补充控制方程,对亥姆霍兹自由能进行扩展,得到了新的包含微态损伤变量的损伤能量释放率,在微态损伤的正则化作用下,采用隐式迭代更新局部损伤和应力等状态变量。基于Galerkin加权余量法,推导了以传统位移和微态损伤为基本未知量的有限元列式。利用该数值模型,对DP1000材料的单向拉伸实验和十字形零件的冲压实验进行了应变局部化与材料断裂的有限元分析。结果表明,该微态弹塑性损伤模型可以得到一致的有限元模拟响应曲线并收敛到实验曲线,从而避免发生网格依赖性问题。  相似文献   
9.
It is well established that the use of inelastic constitutive equations accounting for induced softening, leads to pathological space (mesh) and time discretization dependency of the numerical solution of the associated Initial and Boundary Value Problem (IBVP). To avoid this drawback, many less or more approximate solutions have been proposed in the literature in order to regularize the IBVP and to obtain numerical solutions which are, at convergence, much less sensitive to the space and the time discretization. The basic idea behind these regularization techniques is the formulation of nonlocal constitutive equations by introducing some effects of characteristic lengths representing the materials microstructure. In this work, using the framework of generalized nonlocal continua, a thermodynamically-consistent micromorphic formulation using appropriate micromorphic state variables and their first gradients, is proposed in order to extend the classical local constitutive equations by incorporating appropriate characteristic internal lengths. The isotropic damage, the isotropic and the kinematic hardenings are supposed to carry the targeted micromorphic effects. First the theoretical aspects of this fully coupled micromorphic formulation is presented in details and the proposed generalized balance equations as well as the fully coupled micromorphic constitutive equations deduced. The associated numerical aspects in the framework of the classical Galerkin-based FE formulation are briefly discussed in the special case of micromorphic damage. Specifically, the formulation of 2D finite elements with additional degrees of freedom (d.o.f.), the dynamic explicit global resolution scheme as well as the local integration scheme, to compute the stress tensor and the state variables at each integration point of each element, are presented. Application is made to the typical uniaxial tension specimen under plane strain conditions in order to chow the predictive capabilities of the proposed micromorphic model, particularly against its ability to give (at convergence) a mesh independent solution even for high values of the ductile damage (i.e., the macroscopic cracks).  相似文献   
10.
This paper presents a new approach to interpolate the mechanical fields associated to a given mesh of the computational domain which satisfy the equilibrium equations together with the mechanical criteria which are quadratical in terms of these fields. The method is based on the diffuse approximation techniques. These allow us to construct a field of globally arbitrary order of continuity which approximates accurately the initial discrete mechanical fields. Indeed, the construction is based locally on the resolution of a quadratical optimisation problem under degenerate quadratical constraints for which we propose an analytical solution. The method is applied, in particular, to an equilibrium problem of elastoplastic solid with non linear hardening. To cite this article: P. Villon et al., C. R. Mecanique 330 (2002) 313–318.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号