首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   21篇
  国内免费   24篇
化学   38篇
晶体学   3篇
力学   13篇
数学   6篇
物理学   35篇
  2023年   5篇
  2022年   9篇
  2021年   4篇
  2020年   2篇
  2019年   11篇
  2018年   6篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
2.
利用自主研发的水合物沉积物原位合成与力学性质测试的高压低温三轴仪,通过多级加荷的试验方法,以不同粒径的砂粒作为沉积物骨架进行三轴压缩试验,得到了剪切过程的应力-应变关系曲线,以及不同粒径尺寸沉积物的强度,还有剪切过程中的体积变化关系。结果表明:含水合物沉积物强度随着沉积物粒径尺寸的增大而增强;在降压剪切过程中,所有粒径的水合物沉积物式样均有明显的剪缩现象。  相似文献   
3.
王哲  王发展  王欣  何银花  马姗  吴振 《物理学报》2014,63(7):76101-076101
基于Eulerian-Eulerian方法和流体体积技术,建立了三维多相流体动力学凝固模型,并将其与质量、动量、溶质和热焓守恒方程相耦合,对Fe-Pb合金侧向凝固过程进行了数值模拟.首先,分析了分布面积二次梯度((SPb))和浓度二次梯度((CPb))对偏析模式的影响,结果表明:液、气两相的流动相变使偏析模式表现为上端X形下端V形,X偏析由气相相变驱动力和多取向相变作用下的"散射"形成;ttc时,随(SPb)和(CPb)曲线降低,X偏析的下偏析角增大,上偏析角和V偏析角减小,Pb收得率增大,有利于获得含量稳定弥散的凝固组织.此外,还研究了液、气两相交互流动下通道偏析的形成机理,结果表明:通道偏析仅存在于流动-相变交互作用(ul·cl和ug·cg)为负值的区域,该区域的流动扰动抑制合金的局部凝固,促进偏析通道生长;流动-相变交互作用负值越小,偏析通道持续增长越稳定.模拟结果与实验结果相符合,验证了模型的准确性.  相似文献   
4.
以高磺化度的侧链型磺化聚芳醚酮(S-SPAEK)和聚乙烯醇(PVA)为原料,通过溶液共混的方法在120℃下制备了PVA含量不同的S-SPAEK/PVA交联膜.红外光谱图表明S-SPAEK聚合物中的磺酸基团与PVA中的羟基反应生成酯键而形成共价交联.通过对交联膜的性能测试发现PVA的引入明显降低了膜的甲醇渗透系数,改善了膜的溶胀性,提高了膜的保水能力.S-SPAEK/PVA(85/15)交联膜水的脱附系数从S-SPAEK的3.1×10-8 cm2/s降低到2.9×10-9 cm2/s.在25℃和60℃时S-SPAEK/PVA(85/15)交联膜的甲醇渗透系数分别为2.6×10-7cm2/s和3.9×10-7cm2/s,明显低于相同温度下的纯S-SPAEK膜的8.1×10-7cm2/s与14.5×10-7cm2/s,而其质子传导率虽然有所下降,但是在25℃和80℃时分别达到了0.055 S/cm和0.083 S/cm,能够满足直接甲醇燃料电池(DMFCs)对质子交换膜的要求,有望在DMFCs中得到应用.  相似文献   
5.
扫频式干扰是调频体制引信的主要威胁之一,但其干扰效果具有一定随机性。为了提高其干扰效率,在理论分析扫频式干扰作用下调频引信失效机理的基础上,提出了一种针对单通道调频多普勒引信的窄带扫频式干扰优化方法,可以获取最优的扫频频率步进点数,并依此进行非等间隔频率步进的窄带扫频式干扰。仿真与实测结果表明,该方法可以提高扫频式干扰的干扰效率,同时该方法也可以为成功干扰采用多通道等抗干扰措施的调频引信提供理论设计依据。  相似文献   
6.
Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.  相似文献   
7.
以自制的高磺化度磺化聚芳醚酮砜(SPAEKS)和含有氨基的聚芳醚酮(Am-PAEK)为原料,通过共溶剂涂膜法制备了不同重量比例的Am-PAEK/SPAEKS复合膜.通过高温(160℃)处理使氨基和磺酸基团在复合膜内形成交联,制得交联型复合膜.复合膜的热性能、尺寸稳定性、阻醇性能有所提高,而且交联型复合膜中的Am-PAEK/SPAEKS-C-3质子传导率在120℃时达到了0.0892 S/cm,高于在相同测试条件下SPAEKS膜的0.0654 S/cm和Nafion膜的0.062 S/cm,而其甲醇渗透系数在25℃时达到0.14×10-6cm2/s,低于SPAEKS膜的0.85×10-6cm2/s和Nafion膜的2×10-6cm2/s.实验结果表明,Am-PAEK/SPAEKS交联型复合膜有望在中高温质子交换膜燃料电池中得到应用.  相似文献   
8.
MAX相是一类具有层状结构的三元碳化物或(和)氮化物,M是过渡金属元素,A主要是ⅢA~ⅤA族元素,X是C或N元素。这类化合物兼具陶瓷材料和金属材料的特点,具有优异的导电、导热、耐腐蚀以及抗氧化等性能,在诸多领域具有潜在应用价值。近年来,新元素、新结构和固溶体MAX相的不断出现,进一步扩展了MAX相家族。固溶体MAX相是将合适的元素固溶到已知MAX相中而得到的新MAX相。本文分四类总结了127种MAX相固溶体,对其结构改变和性能调控进行了概括,并指出目前研究存在的理论问题和亟须解决的关键技术,最后对MAX相固溶体的发展进行了预测和展望。  相似文献   
9.
王晓雷  张立功  高旭东  李艳  王哲 《应用声学》2014,22(9):2767-2769
给出了一种基于DSP TMS320F2812和MATLAB实时代码生成工具(RTW)的单相整流器锁相环控制系统,介绍了MATLAB实时仿真控制系统的搭建过程和实际系统的硬件结构;并在此防控一体化控制平台上,介绍并改进了一种双坐标反馈方法设计锁相环的算法,首先利用Matlab/Simulink工具建立了算法模型,并给出了其仿真结果,结果显示功率因数基本为1;然后将仿真模型转换成实时代码,并将代码烧写到DSP控制实际系统中给出了实验结果,实验结果显示相位差为-2度左右,电流稳定在一定值,与仿真结果吻合,证明了这种由可视化模型生成代码的方法不仅缩短了开发周期,而且提高了系统的能观能控性。  相似文献   
10.
采用直接缩聚的方法,通过调整氨基单体用量,合成出了系列带有不同氨基含量的聚芳醚酮砜(Am-PAEKS)聚合物,在聚合物侧链上进行后磺化接枝制备出了系列不同磺化度的侧链型磺化聚芳醚酮砜(S-SPAEKS),并且通过调整磺酸基团含量来控制聚合物的磺化度.通过红外光谱(FTIR)和氢核磁谱(1HNMR),对所合成的单体及其聚合物的结构进行了表征,S-SPAEKS红外光谱在1 239和1 060 cm-1处出现了磺酸基团中O(=)S(=)O的特征吸收峰,氢核磁谱中1.64 ppm处出现了处于烷基链中间位置的两个氢(-CH2-CH2-)化学位移,证明得到了S-SPAEKS聚合物.经热失重分析发现,聚合物中磺酸基团的脱落温度都高于240℃,聚合物主链降解温度都高于450℃.研究表明,该系列聚合物具有良好的热性能,可以用作质子交换膜材料.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号