首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  国内免费   1篇
力学   7篇
数学   1篇
物理学   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
 利用碳纤维复合材料壳体和金属弹头组成的复合弹体,对混凝土靶进行了高速侵彻实验,弹体分别以336、447和517 m/s的速度对强度为30 MPa、厚度为200 mm的混凝土靶进行正侵彻和30°斜侵彻。实验结果表明:碳纤维复合材料壳体具有较高的强度,在高速侵彻靶体的过程中弹体结构能够保持完整,复合材料壳体没有纤维分层和断裂产生。相对于同样结构尺寸的金属弹体(将复合材料壳体替换为密度7.8 g/cm3的金属材料),复合材料弹填充物的质量分数(18.5%)约为金属弹体的两倍,因此采用轻质高强复合材料替代高密度金属弹身,不仅可以提高弹体装填比、增加比毁伤威力,而且还具有较高的侵彻能力。  相似文献   
2.
Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferential and radial stress distribution is a power function of radius parameter when the constitutive relation of specimen material is orthotropic. The stress distribution is a quadratic function of radius parameter for transversely isotropic material. Along the cylinder axial line, the circumferential and radial stresses are maximum and equal to each other. In the circumference boundary surface, the radial stress is zero and the circumferential stress value is minimal. The failure theory of maximum tensile circumferential strain is applied to calculate the critical axial loading. The circumference-boundary-layer failure criterion of orthotropic cylinders is described with the Hill-Tsai strength theory. The obtained strength theory is related to axial stress and mechanical properties of specimen material and to the specimen axialdeformation strain rate and the change rate of strain rate.  相似文献   
3.
在目前的材料动态起裂韧性实验测试中,一般采用三点弯曲试件,并用试件裂纹起裂时的动态应力强度因子(DSIF)K1值表征材料的动态起裂韧性。但是,迄今为止,还没有较好的近似分析方法计算冲击加载下试件的DSIF以及准确判定试件的起裂时间,因此,也没有建立统一的标准测试材料的动态起裂韧性。  相似文献   
4.
利用空气炮冲击实验对吸能包装结构的跌落过程进行模拟,进行了缩比模型的正撞和30°斜撞实验,针对模型实验进行了数值分析,获得了吸能包装结构模型在撞击过程中的应力分布和塑性变形,并将计算情况与实验结果进行了分析。结果表明:在撞击中吸能包装结构主要通过缓冲木材的塑性变形及外钢壳屈曲产生的塑性铰吸收能量,塑性变形主要集中于撞击端,而远离撞击端未见塑性变形;计算中木材本构参数采用顺纹方向压缩应力应变曲线具有一定的有效性。  相似文献   
5.
基于气体炮加载技术和惯性抛射原理,研制了一套水冲击实验装置,可实现规则形状水柱按照设定速度发射。该装置在活塞推射技术的基础上,设计了一个抛射筒取代活塞,将水柱装在抛射筒内;利用气体炮产生的动力加载抛射筒,达到设定速度时撞击缓冲件得到减速,筒内水柱在惯性作用下飞出。抛射筒材料采用高强度合金钢,缓冲件材料采用橡胶,抛射筒在装置发射水柱后可再次使用。使用该装置开展了?200 mm×1 m尺寸水柱的发射实验,水柱速度及形状均满足水冲击实验的要求;采用非接触的光电测速方法测量了发射速度,与理论计算结果比较符合。  相似文献   
6.
利用MTS材料试验机和分离式Hopkinson压杆(SHPB)实验装置对非退火状态Ta-10W合金进行了准静态和动态压缩实验,给出了材料的静态压缩屈服强度和应变率在700~3 100 s-1范围内的动态压缩应力-应变曲线,并获得了不同应变率下材料的动态屈服强度。通过对实验结果的分析可以发现,非退火状态Ta-10W合金具有较好的韧性,在所进行的实验中试件表面均未出现可见裂纹;试件材料具有较高的静、动态屈服强度,静态屈服强度达到930 MPa,动态屈服强度在1 GPa以上,在所进行的700~3 100 s-1应变率范围内,材料的动态屈服强度随应变率的增加略有提高。  相似文献   
7.
采用基于黏聚裂纹模型的扩展有限元方法,开展了镁铝合金结构冲击破坏过程的数值模拟研究。通过镁铝合金三点弯曲试样冲击实验,获得了不同子弹撞击速度下试样的冲击破坏模式。在此基础上,建立了实验结构的扩展有限元模型,并采用最大主应力准则,以及含损伤型的本构关系模拟材料的冲击断裂行为。对于裂纹尖端附近区域,采用黏聚裂纹模型模拟裂纹的断裂过程。对子弹速度分别为12.2、15.1、26.3 m/s的3种工况下镁铝合金试样的动态破坏过程进行了数值模拟研究,获得了与实验相一致的断裂模式。计算结果表明,试样以Ⅰ型断裂模式为主,裂纹沿初始预制裂纹方向扩展。当裂纹扩展到一定程度后,在试样韧带区域被撞击端附近,由于应力波及边界效应导致该区域处于复杂应力状态,试样出现复合型断裂模式,裂纹偏离原扩展路径,与本文实验结果相吻合。  相似文献   
8.
三种加载方向下云杉静动态力学性能研究   总被引:3,自引:0,他引:3  
利用INSTRON和Hopkinson压杆对含水率为12.72%, 密度为 413kg/m^{3}云杉木材试件沿顺纹、横纹径向和横纹弦向进行准静态和动态压缩实验, 获得 了云杉木材3个方向的抗压模量、准静态压缩应力应变曲线和3种应变率下的动态应力应变 曲线. 结果表明云杉木材沿顺纹方向加载破坏形式表现为木材纤维轴向屈曲、褶皱; 横纹径 向和弦向加载失效行为表现为木材纤维间的滑移破坏. 云杉顺纹方向抗压弹性模量最大, 分 别约为横纹径向抗压弹性模量的21倍和横纹弦向抗压弹性模量的32倍; 横纹径向和弦向准 静态压缩屈服应力基本相等, 试件沿顺纹方向准静态压缩屈服应力约为横纹径向和弦向屈服 应力的9倍; 动态压缩屈服强度具有率敏感性, 在应变率为500-1000s^{-1} 动态压缩实验中顺纹、横纹径向和弦向动压屈服强度均随着应变率的增加而显著提高. 同 时对不同方向压缩下木材胞壁失效行为进行了理论分析, 表明产生完全压缩失效的平均极限 载荷与胞壁屈服强度、胞元结构和产生的褶皱长度相关.  相似文献   
9.
基于材料体积不可压假设,对轴向压缩作用下圆柱试件在加载面内的环向和径向应力分布进行理论分析,计算结果表明:当试件材料本构为正交各向异性时,环向和径向应力分布为半径的幂函数形式;试件材料为横观各向同性时,环向和径向应力为半径的二次函数.在圆柱试件轴线上环向和径向应力相等,且均具有最大值;试件圆周边界上径向应力为0,环向应力具有极小值.通过最大拉伸应变破坏理论对试件环向应变进行分析,获得了产生环向拉伸破坏时的临界轴向载荷;并采用Hill-蔡强度理论对试件圆周边界上计算得到的应力参量进行描述,得到了轴压作用下圆柱试件的Hill-蔡强度理论表达式,其不仅取决于轴向应力和试件材料的基本力学性能,还与试件轴向变形的应变率及应变率随时间的变化率相关.  相似文献   
10.
三点弯曲试样动态应力强度因子计算研究   总被引:2,自引:0,他引:2  
利用Hopkinson压杆对三点弯曲试样进行冲击加载,采集了垂直裂纹面距裂尖2mm和与裂纹面成60°距裂尖5mm处的应变信号。根据裂尖附近测试的应变信号计算试样的动态应力强度因子,并与有限元计算结果进行比较,结果表明由于裂尖有一段疲劳裂纹区,通过裂尖附近应变信号来计算动态应力强度因子时,如果裂尖位置确定不准及粘贴应变片位置不够准确对计算结果将带来很大影响。因此利用应变片法计算动态应力强度因子时,为了获得更准确的计算结果,在实验后应对试件裂纹面进行分析测量,重新确定裂尖位置,必要时需对应变片至裂尖距离进行修正后再计算动态应力强度因子值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号