首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   55篇
  国内免费   69篇
化学   152篇
晶体学   7篇
力学   18篇
综合类   9篇
数学   15篇
物理学   134篇
  2023年   12篇
  2022年   8篇
  2021年   5篇
  2020年   5篇
  2019年   10篇
  2018年   11篇
  2017年   10篇
  2016年   12篇
  2015年   14篇
  2014年   21篇
  2013年   20篇
  2012年   12篇
  2011年   12篇
  2010年   14篇
  2009年   14篇
  2008年   16篇
  2007年   17篇
  2006年   19篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1960年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
1.
温娜  张帆 《应用光学》2021,42(2):317-326
为了更快、更直观地进行细胞牵引力的测量,提出了一种基于傅里叶变换的细胞牵引力测量方法。首先,对微柱阵列的像进行二维快速傅里叶变换得到其空间频谱;其次,选取一级衍射斑点中的一个斑点做快速傅里叶逆变换,得到微柱阵列的幅值分布图;最后,由幅值突变的分布情况及突变的剧烈程度得到微柱阵列偏移量的分布情况,再乘微柱刚度即可得到细胞力的分布。通过仿真实验探究了频点选择、滤波窗口大小、偏移点大小对实验结果的影响,在此基础上对细胞-微柱高倍显微图进行了测量。实验结果表明,该方法在结果呈现方面不亚于质心法,测得的各区域最大细胞力的相对误差在17.37%之内,各区域平均细胞力的相对误差在7.93%之内,运算速度也比质心法快近10倍。  相似文献   
2.
本文报道了2个新的Cu(Ⅰ)配合物:[Cu(PPh3)2(dppz)]I(1)(PPh3=三苯基膦,dppz=二吡啶并[3,2-a∶2′,3′-c]吩嗪)和[Cu2(dppm)2(dppz)2]Cl2(2)(dppm=双(二苯基膦)甲烷)的合成,并通过X射线单晶衍射、元素分析、核磁共振氢(膦)谱、荧光光谱和太赫兹时域光谱对其进行了分析和表征。分析结果显示配合物1是一个单核配合物,中心Cu(Ⅰ)离子与2个含膦配体(PPh3)和1个含氮配体(dppz)进行配位,形成了一个扭曲的四面体结构。与1不同的是,配合物2是由CuCl,dppm和dppz以1∶1∶1的比例混配得到的双核配合物。其中,双膦配体dppm作为桥联配体,连接了2个Cu(Ⅰ)离子。荧光光谱表明所有的发射峰均源于金属到配体的电荷转移跃迁(MLCT)。同时,使用太赫兹时域光谱技术表征了2种配合物以及相应的配体。  相似文献   
3.
对柔性砷化镓薄膜太阳电池关键技术进行研究,通过对柔性衬底表面处理、外延片/柔性衬底键合、衬底剥离技术和柔性薄膜外延层器件工艺技术等进行研究,成功地将砷化镓电池外延层转移到柔性聚酰亚胺薄膜衬底上,研制出效率为30.5;(AM0,25℃)的柔性砷化镓薄膜太阳电池,其重量比功率达到2153 W/kg,为将来卫星及临近空间飞行器的应用打下技术基础.  相似文献   
4.
本文系统研究了臭氧修饰对(001)主导晶面锐钛矿型TiO2光催化剂降解甲苯性能的影响. 利用自行搭建的光催化VOCs降解装置对催化剂光降解甲苯的性能进行了测试. 通过多种表征手段,结合原位DRIFTS和DFT计算研究了臭氧表面修饰及甲苯吸附和降解机理. 结果表明,用臭氧进行表面修饰可以显著提高(001)主导晶面TiO2光催化降解甲苯的性能. (001)晶面上丰富的5c-Ti不饱和配位是臭氧分子的吸附位点,其解离后形成的Ti-O键与H2O分子结合,在表面生成大量孤立的Ti5c-OH. Ti5c-OH 是甲苯分子的吸附位,它的形成显著提高了对甲苯分子的吸附能力. 在光照下Ti5c-OH与光生空穴结合能形成·OH自由基. 通过臭氧解离产生的O2也可以与光生电子结合形成超氧自由基. 这些具有强氧化性活性自由基的形成促进了对气相甲苯的光催化降解速率.  相似文献   
5.
航天器中精密器件的稳定性和工作精度决定于器件布置位置的局部结构振动特性,而航天器局部振动特性又受到精密器件布局的影响。因此,航天器中精密器件的布局优化是确保其稳定高效工作的前提条件。该文建立了粘接精密器件的航天器局部柔性薄板结构的动力学模型,发展保结构分析方法模拟了薄板结构的局部振动特性。考虑精密器件形状和尺寸、散热间隙要求等布局约束条件,以各器件布局位置最大面外振动加速度加权值最小化为优化目标,对精密器件布局进行优化设计。优化结果表明:由于所提出的精密器件布局优化设计方法在模拟结构局部振动特性过程中采用了能够较为精确捕捉系统局部动力学特性的保结构分析方法,大幅提高优化效率的同时能够大幅降低器件布局位置最大面外振动加速度;通过布局优化设计,各器件布局位置最大面外振动加速度加权值减小约88.05%,这一结果对提高航天器内精密器件工作稳定性和精度具有一定的参考价值。  相似文献   
6.
黄福  张帆  王波  孙华菊 《应用化学》2014,31(12):1458-1464
以乙二胺(EDA)还原氧化石墨烯(GO)制得一种吸附材料,即还原态氧化石墨烯(RGO)。采用批量平衡法研究了RGO对Zn(Ⅱ)的吸附动力学与热力学,利用Lagergren准一级及准二级动力学方程、Langmuir和Freundlich等温方程对实验数据进行了拟合分析。研究结果表明,Lagergren准二级吸附动力学模型能够较好地描述实验结果,表明该吸附过程以化学吸附为主。RGO的吸附在所研究的Zn(Ⅱ)浓度范围内更符合Langmuir等温吸附经验式,ΔH0=-21.60 k J/mol,吸附焓变小于零,表明该吸附为放热过程;吸附吉布斯自由能变化ΔG0为正值,表明该吸附是一个非自发的过程。  相似文献   
7.
陈延彬  张帆  张伦勇  周健  张善涛  陈延峰 《物理学报》2015,64(9):97502-097502
基于纳米尺寸下复合铁电材料和反铁磁性材料是一个探索多铁性材料有效的方法. 利用激光脉冲沉积制备出LaFeO3-YMnO3人工超晶格和掺入不同层LaFeO3, BiFeO3的Bi4Ti3O12的外延薄膜. 通过系统的X射线衍射、透射电子显微术、扫描透射电子显微术下的能量损失谱表征证明这些样品具有原子尺寸上清晰的界面和完整的层状结构. 磁性测试证明这些材料具有亚铁磁性. 特别是在0.5和1.5LaFeO3-Bi4Ti3O12中的亚铁磁性甚至能保持到室温. 就铁电性而言, 铁电性测试显示出LaFeO3-YMnO3和插入BiFeO3的Bi4Ti3O12样品中存在较大的漏电流, 而在0.5LaFeO3-Bi4Ti3O12样品中存在铁电性. 因此在0.5LaFeO3-Bi4Ti3O12中能够实现亚铁磁和铁电共存. 其次发现当掺入多层的钙钛矿(3层SrTiO3或2.5层LaFeO3)后, Bi4Ti3O12 的层状结构将出现结构失稳现象. 这些工作对于利用纳米复合开发新颖多铁性提供一些实例.  相似文献   
8.
利用扫描电镜技术对金银花尺蠖(Heterolocha jinyinhuaphaga Chu)雌雄蛾触角感受器的种类、形态及分布进行了观察.结果发现,金银花尺蠖雌雄蛾触角上共分布9种感受器,分别为毛形感器、刺形感器、鳞形感器、腔形感器、腔锥形感器、耳形感器、腔乳头感器、叉形感器、锥形感器,其中,毛形感器数量最多,叉形感器只存在于雄蛾触角上.  相似文献   
9.
采用电弧放电法,通过阳极棒与不锈钢片的共蒸发,制备了氮掺杂长竹节状碳纳米管(NDLBLCNTs)。借助扫描电子显微镜(SEM)、场发射高分辨透射电子显微镜(HRTEM)及其附带能量色散X射线(EDX)光谱仪和电子能量损失谱(EELS)、透射电子显微镜(TEM)等表征方法,对产物的形貌、结构和组成进行表征。表征结果表明,NDLBLCNTs的长度在640~835 nm之间,其内径在23~35 nm之间,外径在28~47 nm之间;且在每一节"竹节"与另一节"竹节"的连接处形成的内腔中均有一个黑色纳米颗粒,其直径尺寸以及产物中的NDLBLCNTs的含量均与熔化、蒸发的不锈钢片的面积有关。对NDLBLCNTs的生长机理进行了简单的探讨。  相似文献   
10.
实现了42.8 Gbit/s 差分相移键控调制信号的三信道波分复用传输实验.传输链路为410 km的标准单模光纤,分为四个放大段,采用色散补偿光纤进行色散补偿和掺铒光纤放大器/分布式喇曼放大器混合放大方式.给出了差分相移键控信号及其解调后的信号在背对背和传输后的光谱和眼图(中路波长信号).在接收端使用单端检测,给出中路波长的差分相移键控信号背对背情况和传输后的误码率曲线,并与单信道传输时进行比较.经过传输后的中路信号的误码率可维持在1.0E-3左右.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号