首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   4篇
力学   7篇
  2023年   2篇
  2022年   2篇
  2020年   1篇
  2017年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
粗粒土与结构接触面受载过程中的损伤   总被引:8,自引:0,他引:8  
张嘎  张建民 《力学学报》2004,36(3):322-327
进行了粗粒上与结构接触面单调和循环加载试验,基于宏细观测量结果,扩展了损伤概念以描述该类接触面在受载过程中的物态演化,及由于物态演化导致的力学特性从初始状态到最终稳定状态的连续变化过程.揭示了接触面损伤的细观物理基础主要是接触面内土的颗牲破碎和剪切压密这两种物态演化;指出接触面的剪胀体应变可以划分为可逆性和不可逆性剪胀体应变两部分,其中不可逆性剪胀体应变可作为接触面损伤发展的宏观量度,因此其归一化形式可作为一种损伤因子的定义;提出了建立粗粒土与结构接触面一种损伤本构关系的基本思路.  相似文献   
2.
随着人们环保意识的逐渐增强,对可能存在污染或破坏环境且造成资源浪费的生产活动以及设备的更新升级提出了新的更高的要求. 对于介质润滑领域,尤其是应用广泛且节能环保的水润滑领域,相比传统的润滑油,水作为润滑剂除了安全性高和具有冷却作用外,最大特点就是绿色环保、节约资源且成本低廉. 但是,纯水本身具有一些不足之处,比如黏度低、耐极压能力差、承载和润滑性能差等,导致纯水不适合直接作为润滑剂,这在很大程度上限制了涉及水润滑相关产业的发展. 基于此,在本文中以柠檬酸和尿素为原料,采用一步水热法合成了羽状氮化碳材料. 此方法的特点在于可将氮化碳原位分散于水中,制成水基润滑剂,既实现了溶质的均匀分散和有效抑制团聚,同时可以制备微米级分布的水溶性氮化碳材料. 将其作为水润滑剂,利用环-块摩擦磨损试验机,以逐滴滴加的方式考察了不同质量分数羽状氮化碳对环氧树脂-不锈钢配副在苛刻边界润滑条件下的摩擦学性能. 材料的微观形貌表征结果表明:体相氮化碳在水热条件下直接发生了层间剥离,生成了层间结构蓬松的羽状结构材料. 由于水热条件下的高温和高压环境,导致其层间结合强度显著降低. 同时,蓬松的层间结构有利于氮化碳材料在摩擦过程中向界面转移,在界面形成薄而连续的转移膜. 界面转移物质的拉曼分析结果表明:相较于单纯去离子水,以羽状氮化碳为水润滑剂时,金属对偶表面转移的含碳物质的有序化程度显著提高,而且有序化程度随着水润滑剂中氮化碳含量的增加而逐步提高,间接表明氮化碳材料在界面形成了结构有序的转移膜. 而且氮化碳基转移膜的承载能力和润滑性能俱佳,它可有效保护环氧树脂(EP)-不锈钢配副,避免单纯去离子水润滑时因其承载和润滑性能差导致EP严重磨损的发生. 纯去离子水作为润滑剂时,配副的摩擦系数和EP磨损量分别为0.56和2.92×10?4 mm3/(N·m). 而逐滴添加质量分数20%的羽状氮化碳水润滑剂,上述配副的摩擦系数和EP磨损量分别下降了71.4%和78.1%. 原位水基羽状氮化碳作为一种新型绿色环保水润滑剂,在聚合物-金属配副的润滑设计和使用寿命延长方面具有一定的研究价值和应用潜力.   相似文献   
3.
聚苯硫醚复合材料在柴油润滑状态下的摩擦学性能研究   总被引:1,自引:1,他引:0  
分别以短切碳纤维(SCF)、铜(Cu)、氧化铜(CuO)和硫化铜(CuS)微米颗粒作为填料,通过热压成型制备了系列的聚苯硫醚(PPS)复合材料.利用环-块摩擦磨损试验机,研究了PPS复合材料在柴油润滑状态下的摩擦学性能,结合摩擦表面形貌、转移膜结构和摩擦化学分析,研究了摩擦学机理.结果表明:填充微米颗粒后,PPS复合材料在柴油润滑状态下的摩擦学性能均有不同程度的提高.加入SCF后,PPS表现出最好的耐磨性;Cu和CuS颗粒显著降低PPS的摩擦系数.在此基础上,进一步探究了SCF/Cu、SCF/CuS两组复合填料分别对PPS材料摩擦学性能的影响.研究发现:复合填充SCF和CuS填料后,PPS复合材料的摩擦学性能最佳.SCF和CuS表现出显著的协同效应:SCF提高PPS材料的承载能力和耐磨性;CuS在摩擦界面发生摩擦化学反应,促进具有润滑特性转移膜的形成.  相似文献   
4.
对比研究了?100~100 ℃范围内聚四氟乙烯(PTFE)及三氧化二铝/聚四氟乙烯(Al2O3/PTFE)复合材料的摩擦学性能. 研究结果表明,PTFE因为蠕变,在升温过程中摩擦系数逐步降低,磨损率逐步升高. 而引入Al2O3填料会显著影响PTFE的摩擦学行为,Al2O3/PTFE的摩擦系数普遍比PTFE高,而磨损率比PTFE低. 摩擦学机理表明,滑动过程中形成的摩擦膜是决定摩擦学行为的关键因素. 这对极端工况条件下高分子复合材料的设计具有重要的指导意义.   相似文献   
5.
将氧化石墨烯(GO)原位引入4.4′-二氨基二苯醚(ODA)和3.3′,4.4′-联苯四甲酸二酐(BPDA)制备的聚酰亚胺中,得到氧化石墨烯/聚酰亚胺复合材料. 利用扫描电镜、红外光谱仪、高温同步热分析仪、万能试验机以及纳米划痕仪对所制备材料的形貌、组成以及热力学性能进行表征;利用多功能摩擦磨损试验机对比考察聚酰亚胺和氧化石墨烯/聚酰亚胺复合材料摩擦学性能. 结果表明:氧化石墨烯的加入显著提高了聚酰亚胺的模量和硬度;当GO的质量分数为0.1%和0.3%,复合材料的摩擦学性能较好. 研究发现,摩擦过程中金属对偶表面形成的转移膜对聚酰亚胺复合材料的摩擦学性能起重要作用.   相似文献   
6.
聚合物复合材料由于其自润滑特性和化学稳定性高等优势,在汽车和装备领域运动机构的摩擦学设计中发挥着越来越重要的作用.本研究系统考察了氟化钙(CaF2)颗粒的加入对聚四氟乙烯(PTFE)和碳纤维(CF)增强PTFE材料摩擦学性能的影响规律.研究发现,在PTFE中添加CaF2颗粒可明显改善基体材料的抗磨性能.尤其,与分别填充有CaF2陶瓷颗粒或CF的PTFE材料相比,同时填充CaF2和CF的PTFE多元复合材料的耐磨性能分别提高了11.1和2.47倍. CF与CaF2表现出显著的协同抗磨作用,同时该多元复合材料表现出极低的特征磨损率[8.9×10-7 mm3/(N·m)]和优异的自润滑性能.通过多种表征手段深入分析了金属对偶表面生长转移膜的微观结构以及界面的物理化学反应和产物.结果表明,PTFE发生摩擦化学反应并生成的羧酸基团,随后与CF研磨产生的石墨碳、破碎的CaF2以及其摩擦化学反应产物碳酸钙(CaCO3...  相似文献   
7.
本文中研究制备了聚酰亚胺(PI)多元纳米复合材料,系统考察了多元纳米复合材料在干摩擦条件下的摩擦学性能,并通过扫描电子显微镜(SEM)、光学显微镜(OM)、X射线光电子能谱(XPS)、红外光谱(ATR-FTIR)和拉曼光谱(Raman)对转移膜的微观形貌和化学成分进行系统分析.摩擦学试验结果表明,与传统碳纤维/石墨(CF/Gr)增强的聚酰亚胺复合材料相比,凹凸棒石(ATP)增强的聚酰亚胺多元纳米复合材料具有更佳的减摩抗磨性,其磨损率降低约69%.结果分析表明在摩擦热和摩擦应力作用下,ATP的摩擦化学产物MgO、SiOx和Al2O3与PI分子链段以及石墨碳在摩擦界面发生摩擦烧结,在金属对偶表面形成含有陶瓷微晶的高质量转移膜,显著提升PI复合材料在干摩擦条件下的减摩抗磨性能.本研究为制备耐高温和长寿命高端摩擦部件提供研究基础.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号