首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
力学   6篇
物理学   1篇
  2023年   2篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
叶坤  叶正寅  武洁  屈展 《气体物理》2016,1(5):39-51
开式凹腔作为超燃冲压发动机中增加掺混和稳焰的装置, 其流动稳定性的研究对深入理解凹腔增加掺混和稳焰机理以及凹腔的设计有着重要的学术意义和工程应用价值.基于大涡模拟方法对超燃冲压发动机开式凹腔流动进行数值模拟, 分别采用动力学模态分解(dynamic mode decomposition, DMD)和本征正交分解方法(proper orthogonal decomposition, POD)对自激振荡流动进行稳定性分析. DMD方法可准确提取凹腔的振荡频率, 与Rossiter模型以及压力脉动FFT分析得到的频率吻合较好, 且DMD中对应Rossiter前3阶频率的模态在流动中的主导作用顺序也与FFT分析结果一致, 自激振荡中RossiterⅢ模态占据主导作用, 同时DMD方法对Rossiter 3阶以上模态频率的预测能力明显强于FFT分析方法.在对低频的提取方面, DMD方法比Rossiter模型更具有优势.与前6阶Rossiter模态对应DMD模态均缓慢收敛, 主要表现为剪切层中的分离涡结构和中部及下游区域中的涡结构.前3阶不稳定模态中的分离涡结构主要集中在中部剪切层以及后缘附近区域. POD方法中较少的模态包含流场绝大部分的能量.但是, 通过POD方法提取的模态频率在分辨率上效果不佳, 提取到最低频率为Rossiter 3阶模态对应的频率, 且模态中均存在次频, 次频与主频之间的耦合导致模态的形态相差较大.另外, 与DMD方法相比POD方法无法判断所提取的模态的稳定性.   相似文献   
2.
鉴于高超声速中气动热预测的不确定性影响热气动弹性分析的可靠性,提出一种温度分布参数化模型,基于此模型,对高超声速舵面热气动弹性中气动热的不确定性及全局灵敏度进行分析,分析方法:求解N-S方程得到物面的温度分布,对此温度分布进行参数化,分别采用蒙特卡罗模拟(Monte Carlo simulation,MCS)方法和稀疏网格数值积分(spare grid numerical integration,SGNI)方法生成不确定性及全局灵敏度分析所需样本,对所有样本都进行热气动弹性分析,热气动弹性分析过程为:由样本得到温度分布,基于此温度分布,考虑热应力和材料属性的影响,对结构进行模态分析,将结构模态插值到气动网格,采用基于CFD的当地流活塞理论进行了气动弹性分析.分别在两种飞行状态下进行分析,计算结果表明:(1)M=5,H=15 km,结构固有频率和颤振分析结果的变异系数约为5.83%;(2)M=6,H=15 km,结构和颤振分析结果的变异系数约为8.84%.两种状态下,两个不确定参数的全局灵敏度都在50%左右,两者耦合作用很小,约为0.与MCS方法相比,SGNI方法显著的提高了不确定性分析效率.  相似文献   
3.
转捩位置对全动舵面热气动弹性的影响   总被引:1,自引:0,他引:1  
刘成  叶正寅  叶坤 《力学学报》2017,49(4):802-810
高超声速附面层的转捩预测一直是流体力学研究中的难点,转捩前后物面的摩擦系数和传热系数会发生改变,转捩位置的不同会影响到飞行器表面热环境,进而使得飞行器的气动弹性特性发生显著变化.鉴于高超声速附面层转捩预测的不确定性,本文分析了转捩位置对高超声速全动舵面热气动弹性的影响.首先分别用层流模型和湍流模型求解N-S方程,得到气动热环境,并对气动热进行参数化;然后在不同转捩位置情况下构造出不同转捩位置的热分布模型,基于此种温度分布,结合热应力和材料属性的影响分析结构的热模态,将结构模态插值到气动网格上,采用基于CFD的当地流活塞理论进行气动弹性分析.以M=6,H=15 km的某舵面为对象进行计算,结果表明:(1)随着转捩位置向后缘移动,结构频率上升,结构颤振速度呈增大趋势,转捩位置的变化能够带来颤振临界速度最大6%的变化量;(2)当转捩位置位于舵轴附近时,结构的颤振特性变化剧烈.通过刚度特性的分解和分析发现,导致颤振特性变化的主要因素在于舵轴的刚度特性变化,舵轴的影响量占整个结构刚度特性变化量的80%以上.  相似文献   
4.
高超声速全动舵面的热气动弹性研究   总被引:1,自引:0,他引:1  
根据分层求解原理对考虑舵轴及舵轴与机身间隙影响下的高超声速飞行器全动舵面进行了热气动弹性分析.采用计算流体力学(CFD)方法求解N--S方程计算舵面周围的热环境,在该温度分布下根据结构壁面温度计算热流,应用傅里叶(Fourier)定律确定结构热传导过程及其内部温度分布,进而分析结构考虑热应力和温度对材料属性的影响下的模态固有特性,结合基于CFD技术的当地流活塞理论,在状态空间中对舵面进行了热气动弹性分析.结果表明,气动加热效应改变了结构的固有频率以及弯扭耦合频率之间的间距,进而改变了结构的颤振速度和颤振频率;随着热传导的进行,结构固有频率和颤振频率先快速减小后基本保持不变,弯扭耦合频率之间的间距和颤振速度则先快速减小后略有上升;舵轴及舵轴与机身间隙的存在对舵面的固有频率、颤振频率、颤振速度都产生了影响,使其最大下降了6%.  相似文献   
5.
叶坤  叶正寅  屈展 《应用力学学报》2012,29(6):636-642,770
提出了一种新型气动技术,其主要原理是:将机翼上表面的一部分翼面设计为活动翼面,当飞机进入降落阶段、迎角较大时,适当抬高该活动翼面,从而在该活动翼面后形成一个台阶,通过台阶中产生的稳定驻涡来控制机翼上表面的流动;与此同时,打开安装在机翼上的Gurney襟翼,可达到同时提高机翼升力和失速迎角的目的。将该技术在DLR-F4上应用,数值模拟结果表明:机翼的最大升力系数提高了17.37%;失速迎角从11°提高到13°,提高了18.18%。本文为提高飞机的着落性能探索出一种具有发展潜力的方法。  相似文献   
6.
吴康灵  叶正寅  叶坤  洪正 《力学学报》2023,55(4):874-884
鸟类羽毛在飞行中的物理性质是仿生力学关心的重要问题之一.基于CFD/CSD数值模拟方法研究了羽毛微结构在气流作用下的变形和力学特征,揭示了鸟类静止时羽毛蓬松、而在飞行状态下紧贴皮肤表面保持表面光滑的物理机制.首先,通过对鸟类羽毛在显微镜下的观察,将羽毛分解成典型简单微结构以模仿羽枝单元,从而对羽毛外形和结构进行建模,之后,采用CFD/CSD方法分析比较了两种典型羽枝模型结构(片状和枝状羽枝单元)的变形和力学特征,最后,基于上述片状羽枝模型进一步研究了来流方向对羽枝变形的影响机理及多根排列羽枝的变形和力学特征.结果表明:在一定风向的范围内,羽毛在气流下都具有保持紧贴皮肤表面的变形趋势,这种紧贴壁面的趋势只有在气流与羽轴几乎垂直时才会改变;在来流侧滑角为45°时,羽枝沿皮肤表面法向下压的变形最为显著,尖端位移达原始高度的约97%;多根排列的羽枝在顺流方向气动载荷逐渐下降,与迎风首根羽枝最大差距约11%.此研究工作对于理解鸟类飞行时羽毛的力学特性有明确的学术价值.  相似文献   
7.
静气动弹性问题考虑弹性结构与定常气动力间的相互耦合作用,对飞行器的性能和安全具有显著的影响.在现代飞行器设计阶段,计算流体力学(CFD)/计算结构力学(CSD)直接耦合方法是精确考察静气动弹性影响的重要手段.然而,基于CFD技术的气动力仿真手段在耦合过程中计算量大且耗时长,难以满足设计阶段的需求.因此,为了兼顾计算精度与效率,文章采用本征正交分解(POD)和Kriging代理模型相结合的模型降阶方法,替代CFD求解过程并耦合有限元分析(FEA)方法,建立了高效、准确的静气动弹性分析框架.相较于传统的以模态法为主的静气动弹性分析方法,该方法能够解决更为复杂的静气动弹性问题以及提供静气动弹性变形过程中的气动分布载荷.针对典型三维跨声速HIRENASD机翼模型开展的马赫数、迎角变化的算例验证表明:由建立的静气动弹性分析方法与CFD/CSD直接耦合方法计算得到机翼翼梢处的静变形量间的相对误差在5%以内;同时该方法预测静平衡位置处的气动分布载荷的误差在5%以内,静气动弹性分析的计算效率至少提升了6倍.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号