首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   36篇
化学   3篇
晶体学   41篇
物理学   51篇
  2020年   1篇
  2017年   1篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   11篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
Yb3+掺杂晶体材料是重要的激光材料,在超短脉冲激光、大功率激光等领域有重要应用前景,但长期以来很难通过实验拟合确定Yb3+晶体场参数,尤其是低对称体系,从头计算是解决此问题的重要途经.本文介绍了适合计算稀土离子掺杂晶体的从头计算DV-Xα方法和有效哈密顿量模型,用该方法计算了Yb3+掺杂M型和M'型钽铌酸盐的晶场参数和旋轨耦合参数,得到的能级结构和实验能很好地符合,并发现了Yb3+掺杂钽铌酸盐的晶场强度参数随稀土原子序数呈现规律变化.表明结合DV-Xα计算和有效哈密顿量方法是计算Yb3+掺杂低对称钽铌酸盐晶体场的有效途径,结果显示Yb3+掺杂钽铌酸盐晶体有望成为新型全固态激光工作物质.  相似文献   
2.
The Yb3+ doped Ba2YB'O6 (B'=Ta5+, Nb5+) were prepared by high temperature solid-state reaction method, their structures were determined by x-ray diffraction and refined by Rietveld method. The diffuse reflection absorption, excitation and emission spectra of Yb3+:Ba2YB'O6 (B'=,Ta5+, Nb5+) were measured at room temperature. Under the excitation of ultraviolet light, these phosphors exhibit broad charge transfer band emissions of TaO6 or NbO6 centre with large Stokes shift. The Yb3+ doped into these hosts are situated at Y3+ sites of cubic symmetry (Oh). The experimental energy levels of Yb3+ in Ba2YTaO6 and Ba2YNbO6 were determined by photoluminescence and diffuse reflection absorption spectra. Their wavefunctions and theoretical energy levels were obtained by diagonalising the Hamiltonian matrix. The experimental energy levels were fitted by Levenberg--Marquardt iteration algorithm to determine crystal field parameters. Then, the magnetic-pole transition line strengths of Yb3+:Ba2YB'O6(B'=Ta5+, Nb5+) from (2F5/28- to the low-energy states were calculated.  相似文献   
3.
采用提拉法成功生长出了Er∶YSGG晶体。吸收光谱分析表明Er∶YSGG晶体在967.5 nm有较强的吸收峰和较宽的吸收谱带。采用966 nm半导体激光器泵浦YSGG/Er∶YSGG复合激光晶体元件,实现了2.796μm的连续激光输出,最大输出功率439 mW,相应的斜率效率为12.5%,光光转换效率为10.6%。  相似文献   
4.
测量了YAG(Y3Al5O12)/Nd:YAG单晶、Nd:YAG前驱物及其在不同温度下煅烧获得粉体的拉曼光谱,对谱峰的振动模式进行了指认,对结果进行了分析.Nd:YAG前驱物在煅烧时,有一个由非晶态向晶态的转化过程;700℃下烧结前驱物获得非晶态产物的结构中含有AlO4四面体结构;随着煅烧温度的升高,拉曼光谱的变化主要表现在两个方面:一是谱峰半高宽(FWHM)减小,谱峰强度增大;二是一些拉曼光谱谱峰发生了频移,这是纳米多晶粉体的界面组元的有序度提高所致.另外,800℃下煅烧获得的Nd:YAG纳米粉体的品格振动模式与Nd:YAG晶体的晶格振动模式存在差异,这是纳米多晶粉体的界面组元的贡献所致.  相似文献   
5.
采用提拉法生长了直径为136mm的Nd3+:GGG单晶,通过X射线衍射和X射线荧光对晶体的结构、成分沿生长方向和径向的变化进行了测试分析.结果表明单胞晶格参数沿晶体的生长方向和径向均逐步变大,平均变化率分别为3.1×10-6(A)/ mm、1.3×10-5(A)/mm;沿着晶体的生长方向,Nd和Gd组分按指数函数规律逐步增加,而Ga组分则按高斯函数逐渐减小.沿晶体径向从内到外,Nd、Gd组分按线性规律逐渐增大,其变化率分别为0.0014 at%/ mm、0.00924 at%/ mm,Ga组分则按线性规律减小,变化率为-0.0117 at%/ mm.这些变化主要是由于Nd3+的分凝效应、Ga挥发所导致.  相似文献   
6.
Nd3+ :GSAG是性能优良的942 nm激光晶体.用提拉法成功生长Nd3+ :GSAG单晶,研究其室温透射光谱,辨认位置高达29967 cm-1的68个Nd3+晶场能级.对这些能级拟合了自由离子及晶场Hamilton参量,拟合标准偏差为16.7 cm-1,表明实验与计算能级符合很好.获得的Hamilton参量可用于计算Nd3+ :GSAG中Nd3+的  相似文献   
7.
张季  张德明  王迪  张庆礼  孙敦陆  殷绍唐 《物理学报》2013,62(23):237802-237802
本文通过分析不同几何配置下的偏振拉曼光谱对非线性光学晶体的晶格振动模式进行了研究. 首先根据因子群分析,将晶体的振动模按晶体对称群的不可约表示进行分类,其次测量了晶体在10–1600 cm-1范围内,不同几何配置下的偏振拉曼光谱,并在此基础上指认了晶体的晶格振动模式. 300 cm-1以下的振动峰,归结为晶体的外振动,来自[BiO6],[ZnO4],[BO4]和[BO3]原子基团的平动和转动;300cm-1以上为晶体的内振动,主要与Bi-O,和Zn-O键振动有关. 晶体拉曼光谱中最高振动频率达到1407 cm-1,被指认为[BO3]三角形中B-O键的伸缩振动,体现了[BO3]基团中高的电子非局域化程度. 关键词: 2ZnOB2O6单晶')" href="#">Bi2ZnOB2O6单晶 偏振拉曼光谱 振动模式  相似文献   
8.
紫外非线性光学晶体三硼酸铯的生长和性能   总被引:3,自引:3,他引:0  
采用泡生法和提拉法生长出三硼酸铯(化学式CsB3O5,简称CBO)晶体,研究了晶体生长工艺条件及晶体生长形态.泡生法生长的CBO晶体的尺寸为40mm×25mm×25mm;生长过程中晶体转速为10~20r/min,降温速率为0.1~0.2℃/d.用提拉法生长出20mm×30mm的CBO晶体;生长过程中液面温度梯度为60℃/cm,提拉速度为8mm/d.在生长过程中Cs2O的挥发速度大于B2O3的挥发速度.CBO单晶的晶面由[011]斜方柱和[010]斜方柱单形组成,属于[011]单形是4个较大的面,属于[101]单形是4个较小的三角形晶面.CBO在紫外波段具有较大的有效非线性光学系数.利用CBO进行Nd∶YAG激光和频获得了高转换率的波长355nm及266nm相干光输出.  相似文献   
9.
掺质YAG晶体中的缺陷   总被引:7,自引:3,他引:4  
本文报道了用化学腐蚀法对掺质浓度不同和掺质种类不同的YAG晶体样品进行的腐蚀,详细地观察了样品表面的腐蚀坑形貌,尤其是位错腐蚀坑的形貌和分布,测量了原生态和相应的退火样品上位错腐蚀坑的平均密度。在观测中发现,有些掺钕晶体样品上,位错腐蚀坑在中心区与边缘区的密集程度不同,有明显的分界。对此现象进行了探讨,认为出现在样品边缘区内的密集位错,除了来自于籽晶中以及来自于晶体从籽晶开始生长的起始处外,也由于  相似文献   
10.
应用高温拉曼光谱研究了PbMoO4熔体中的生长基元.通过对不同温度下PbMoO4晶体拉曼光谱和熔点温度附近熔体高温拉曼光谱的研究,发现PbMoO4熔体中存在Pb2+阳离子和[MoO42-阴离子生长基元.进一步讨论了PbMoO4晶体生长基元和各个低指数晶面间的相互作用,解释了晶体的生长习性和枝晶生长的原因,并指出:PbMoO4晶体生 关键词: 钼酸铅晶体 枝晶 籽晶取向 拉曼光谱  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号