首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   5篇
  国内免费   3篇
晶体学   5篇
物理学   4篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2012年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
利用密度泛函理论框架下的平面波超软赝势法,通过第一性原理对La掺杂与Zn空位(V_(Zn))及La掺杂与S空位(V_S)共存的ZnS体系的电子结构、磁性机理、形成能及吸收光谱进行了研究.结果表明, La掺杂与空位(V_(Zn)或V_S)的空间位置最近时,掺杂体系的形成能最低,体系最稳定.另外,La掺杂与Zn空位共存时,体系具有磁性,且体系的净磁矩与La原子与Zn空位的相对位置有关;La掺杂与S空位共存时,掺杂体系无磁性,但此时体系的禁带宽度最窄且吸收光谱红移最显著.  相似文献   
2.
基于第一性原理计算,建立了含有不同Ce与O空位配比的锐钛矿TiO2模型.对各个体系的稳定性、磁性、电子结构及吸收光谱进行了计算.结果表明:Ce与近邻O空位间的自旋电子交换是锐钛矿TiO2净磁矩的来源,因此体系的磁性与Ce和O空位的相对位置有关.Ce或O空位浓度增加在费米能级附近形成的施主能级使得带隙宽度进一步减小,因此体系对可见光的吸收系数进一步增加.与局域性更强的Ce-4f电子相比,Ti-3d电子更易受激参与光催化反应,因此Ce掺杂引起的O空位及其浓度是影响锐钛矿TiO2光催化性能的主要因素.  相似文献   
3.
采用密度泛函理论下的第一性原理平面波超软赝势方法研究了纤锌矿本征AlN,Mg单掺杂AlN和Mg,O共掺杂AlN体系的晶格参数、能带结构、电子态密度、差分电荷密度及电子布居数.计算结果显示:在Mg,O共掺杂AlN体系中,激活施主O原子的引入能使受主能级降低,形成浅受主掺杂.同时,体系的非局域化特征显著,受主能带变宽.因而提高了Mg原子的受主掺杂浓度和系统的稳定性.Mg,O共掺杂更有利于制备p型AlN.  相似文献   
4.
采用直流热阴极等离子体化学气相沉积(DC-PCVD)方法,以三聚氰胺(C3H6N6)的甲醇(CH3OH)饱和溶液为掺杂源,通过改变反应气氛中的Ar浓度,在P型Si(111)基片上沉积了氮掺杂纳米金刚石膜。采用扫描电子显微镜、拉曼光谱仪、X射线衍射仪、霍尔测试系统等分析了不同Ar浓度对氮掺杂金刚石膜生长特性的影响。结果表明:随着Ar浓度的增加,膜的晶粒尺寸逐渐减小,表面变得光滑平整;由拉曼G峰漂移引起的压应力先减小后增大;膜的导电性能变好。且由于C3H6N6的引入,使得在较低的Ar浓度下(H2/Ar流量比为100/100时),即可制得晶粒尺寸在30~50 nm的高质量的金刚石膜样品,远低于H2/Ar体系的Ar浓度为90%的阈值。  相似文献   
5.
李聪  郑友进  付斯年  姜宏伟  王丹 《物理学报》2016,65(3):37102-037102
采用密度泛函理论下的平面波赝势方法,建立了未掺杂锐钛矿TiO_2和La/Ce/Pr/Nd单掺杂的锐钛矿TiO_2模型.几何优化后,通过计算形成能分析了掺杂结构的稳定性;通过自旋电子态密度的计算分析了各个掺杂模型的磁性状态,并采用比较磁性基态能量的方法对分析结果加以验证;讨论了各稀土元素掺杂对锐钛矿能带结构和吸收光谱的影响.结果表明:La/Pr掺杂的锐钛矿TiO_2具有亚铁磁性,Nd掺杂的锐钛矿具有反铁磁性,Ce掺杂锐钛矿为顺磁体;Ce掺杂对锐钛矿能带结构影响较小,吸收光谱红移不明显,而La/Nd掺杂则能有效提升锐钛矿对可见光的吸收系数,Pr掺杂能使锐钛矿TiO_2在红外光区出现吸收峰.  相似文献   
6.
基于第一性原理计算,建立了未掺杂和三种Y掺杂量的锐钛矿TiO2模型。对各个模型的形成能、磁性、电子结构及吸收光谱进行了计算。结果表明:掺入锐钛矿晶格的不同Y原子之间没有团簇趋势;Y掺杂量越大,实现掺杂所需的能量越高;Y掺杂的锐钛矿体系具有铁磁性,因而晶格中的自旋能级分裂效应能降低锐钛矿的带隙宽度,但当Y掺杂量升高时,这种影响显著减弱;随着Y掺杂量增加,弱束缚的O-2p态电子浓度增加,导致价带顶的O-2p态跨越费米能级,使得带隙值减小,进而提高了改性锐钛矿TiO2对可见光的吸收系数。  相似文献   
7.
通过第一性原理,对Na掺杂(NaZn)与Zn空位(VZn)及Na掺杂与O空位(VO)共存的ZnO体系的形成能、电子结构及磁性机理进行了研究.结果表明,Na原子与空位(VZn或VO)空间位置最近时,掺杂体系的形成能最低;与诱导VZn相比,Na掺杂在ZnO体系中更易诱导VO,并且过量的Na掺杂必然导致VO的形成.另外,磁性研究发现,Na掺杂与空位(VZn或VO)共存的体系都具有磁性.并且Na掺杂与VZn共存的ZnO体系磁性源于VZn的本征缺陷,而Na掺杂与VO共存的ZnO体系的磁性源于Na原子与VO的电子关联交互作用.  相似文献   
8.
本文利用密度泛函的广义梯度近似研究了Mn掺杂InP(111)-In极化面的电子结构与磁学性质.研究结果表明,随着Mn原子的掺杂位置靠近In极化面,Mn原子掺杂的形成能逐渐降低.并且所有Mn掺杂表面模型均表现出稀磁半导体特征.其原因主要在于费米能级附近的Mn-3d自旋态密度具有不对称性.通过对Mn不同掺杂位置的电子态密度、费米能级及Mn原子氧化态的对比分析发现,Mn原子的表面掺杂引起了In极化面的表面原子重构.通过对形成能与净磁矩的分析发现,所有掺杂在表面层的Mn原子的氧化态都是Mn2+.另外,随着Mn原子掺杂位置上移,费米能级向低能级方向移动,表面体系表现出明显的的P型半导体特征.  相似文献   
9.
采用密度泛函理论下的第一性原理平面波超软赝势方法研究了Ti0.97917 Mo0.02083 O2,Ti0.96875 Mo0.03125 O2和Ti30 Mo2 O64超胞模型的晶格常数,能带结构,态密度和吸收光谱分布.研究结果表明,随着Mo掺杂量的增大,掺杂体系的体积逐渐增大,形成能逐渐升高,掺杂越困难.与此同时,掺杂体系吸收带边均显著红移,禁带宽度均变小,所有掺杂体系均转化为n型简并半导体.与未掺杂TiO2相比较,随着Mo掺杂量提高,掺杂体系禁带宽度减小趋势逐渐减弱,吸收光谱红移减弱.同时,体系的磁矩减小.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号