首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   80篇
  国内免费   175篇
化学   887篇
晶体学   21篇
力学   9篇
物理学   81篇
  2023年   8篇
  2022年   16篇
  2021年   22篇
  2020年   26篇
  2019年   38篇
  2018年   18篇
  2017年   20篇
  2016年   38篇
  2015年   19篇
  2014年   36篇
  2013年   82篇
  2012年   46篇
  2011年   54篇
  2010年   21篇
  2009年   41篇
  2008年   48篇
  2007年   49篇
  2006年   48篇
  2005年   47篇
  2004年   57篇
  2003年   44篇
  2002年   28篇
  2001年   17篇
  2000年   14篇
  1999年   20篇
  1998年   12篇
  1997年   22篇
  1996年   22篇
  1995年   31篇
  1994年   11篇
  1993年   5篇
  1992年   11篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
排序方式: 共有998条查询结果,搜索用时 31 毫秒
1.
Luminescent seven-coordinated zirconium and hafnium complexes bearing three mono-anionic 2,2′-pyridylpyrrolide ligands and one chloride were synthesized. Solid-state structures and the dynamic behaviors in solution were probed by X-ray crystallography and variable temperature 1H NMR experiments, respectively. Absorption spectroscopy and time-dependent density functional theory (TD-DFT) calculations supported a hybrid of ligand-to-metal charge transfer (LMCT)/ligand-to-ligand charge transfer (LLCT) for the visible light absorption band. The complexes (MePMPMe)3MCl (M=Zr, Hf, MePMPMe=3,5-dimethyl-2-(2-pyridyl)pyrrolide) are emissive in solution at room temperature upon irradiation with visible light due to a combination of phosphorescence and fluorescence characterized by excited state lifetimes in the μs and low to sub-ns timescale, respectively. Electrochemical experiments revealed that the zirconium complex possesses a reversible redox event under highly reducing condition (−2.29 V vs. Fc+/0).  相似文献   
2.
3.
Highly position selective alkylations of N-alkylindoles at C7-positions have been enabled by cationic zirconium complexes. The strategy provides a straightforward access to install alkyl groups at C7-positions of indoles without a complex directing group. Mechanistic studies provided support for the importance of Brønsted acids in the catalytic manifold.  相似文献   
4.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   
5.
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium‐based metal–organic frameworks (Zr6‐MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4‐nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non‐volatile, water‐insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective.  相似文献   
6.
By using the strategy of pre-assembly chlorosulfonation applied to a linker precursor, the first sulfonated zirconium metal–organic framework ( JUK-14 ) with two-dimensional (2D) structure, was synthesized. Single-crystal X-ray diffraction reveals that the material is built of Zr6O4(OH)4(COO)8 oxoclusters, doubly 4-connected by angular dicarboxylates, and stacked in layers spaced 1.5 nm apart by the presence of sulfonic groups. JUK-14 exhibits excellent hydrothermal stability, permanent porosity confirmed by gas adsorption studies, and shows high (>10−4 S/cm) and low (<10−8 S/cm) proton conductivity under humidified and anhydrous conditions, respectively. Post-synthesis inclusion of imidazole improves the overall conductivity increasing it to 1.7×10−3 S/cm at 60 °C and 90 % relative humidity, and by 3 orders of magnitude at 160 °C. The combination of 2D porous nature with robustness of zirconium MOFs offers new opportunities for exploration of the material towards energy and environmental applications.  相似文献   
7.
Polar functionalized isotactic and syndiotactic polypropylenes (PPs) are synthesized by direct, masking-reagent-free propylene and amino–olefin (AO, CH2=CH(CH2)xNnPr2, x=2, 3, 6) copolymerizations using the activated precatalysts rac-[Me2Si(indenyl)2]ZrMe2 and [Me2C(Cp)(fluorenyl)]ZrMe2, respectively. Polymerization activities at 25 °C are as high as 4208 and 535 kg/(mol h atm) with AO incorporation up to 4.0 mol % and 1.6 mol %, respectively. Remarkably, introducing the amino-olefin comonomers significantly enhances stereoselection for both isotactic (mmmm: 59.5 %→91.0 %) and syndiotactic (rrrr: 66.3 %→81.3 %) products.  相似文献   
8.
Nanosized α-zirconium phenylphosphonate particles were successfully prepared by the reaction between different zirconium sources and molten phenylphosphonic acid in the absence of solvent. The resultant nanoplates exhibit particle sizes in the range of 15 to 30 nm. The use of a topotactic anion exchange method starting from α-zirconium phosphate instead resulted in the generation of 15 to 180 nm plates, while also resulting in nanoparticles with a higher degree of crystallinity. The topotactic anion exchange of the phosphate groups by phenylphosphonate groups could be performed to completion when performed in molten phenylphosphonic acid. Characterization of both the final products as well as the individual steps in the anion exchange were performed by powder XRD, fast neutron activation analysis, TGA, FTIR spectroscopy, TEM, solid-state NMR and XPS.  相似文献   
9.
Solid-state NMR experiments on 2H, 31P, 13C, and 1H nuclei, including 31P T1, 1H T1, and 1H T measurements, as well as on the kinetics of proton-phosphorus cross-polarization have been performed to characterize the crystalline and amorphous α-zirconium phosphates, which were intercalated with D2O and/or CD3OD. The 13C{1H} CP MAS NMR experiment performed for compound 1-CD 3 OD (Zr (HPO4)2 . 0.2CD3OD) with carbon cross-polarization via protons of phosphate groups has provided a prove that the methanol was intercalated into the interlayer spaces of this compound. The variable-temperature 2H solid-echo MAS NMR spectra of intercalated compounds demonstrated that the methanol molecules, in contrast to the mobile water, were immobile, keeping, however, free CD3 rotations around the C3-axis. It has been demonstrated that the intercalated species, D2O and CD3OD, do not affect the high-frequency motions of the phosphate groups. By utilizing local structural models that satisfy the constraints of the experimental data, it has been suggested that the immobile methanol molecules are located in the cavity between two neighboring layers of the zirconium phosphates. Thus, the present work illustrates the reliable criteria in a comprehensive NMR approach to structural and dynamic studies of such systems.  相似文献   
10.
In this work the mechanism of L-lactide polymerization promoted by NSSN zirconium complexes was investigated through DFT methods with the aim to understand as the electronic and steric features of the ligand affect the energy reaction. It was observed that the rate determining step of the process is the opening of the L-lactide ring and that by increasing the steric hindrance, evaluated by changing geometric parameters and topographic steric maps, or the electron-withdrawing properties of the ligand, the corresponding energy barrier increases. On the other hand, calculations foresee that a small and electron-releasing substituent on the nitrogen atom of the ligand, such as the methyl group, is desirable in order to obtain NSSN zirconium based catalysts with improved activity in the ROP of the L-lactide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号