首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   45篇
  国内免费   145篇
化学   671篇
晶体学   12篇
综合类   5篇
物理学   42篇
  2023年   6篇
  2022年   10篇
  2021年   20篇
  2020年   18篇
  2019年   20篇
  2018年   16篇
  2017年   26篇
  2016年   19篇
  2015年   26篇
  2014年   22篇
  2013年   80篇
  2012年   39篇
  2011年   27篇
  2010年   29篇
  2009年   23篇
  2008年   27篇
  2007年   44篇
  2006年   33篇
  2005年   28篇
  2004年   35篇
  2003年   33篇
  2002年   22篇
  2001年   13篇
  2000年   6篇
  1999年   9篇
  1998年   16篇
  1997年   11篇
  1996年   11篇
  1995年   15篇
  1994年   9篇
  1993年   6篇
  1992年   9篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1972年   2篇
排序方式: 共有730条查询结果,搜索用时 15 毫秒
1.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   
2.
Porous TiNxOy‐based particles were synthesized by an aerosol spray process. At first, the starting sol solution containing the metal precursor and the nitrogen source is sprayed to form an aerosol that is subsequently pyrolysed at different temperatures. The obtained dried particles are an amorphous coordination “polymer” rich in carbon and nitrogen. These “glassy” particles are finally thermally treated at 800 °C, promoting the crystallization of the particles and the release of a major part of the carbon. As the particles keep their original shape, carbon loss and density increase during the crystallization step and lead to the development of an accessible pore structure. The process was analyzed and extended to the synthesis of other metal nitrides, such as VN and W2N, thereby showing its general validity for the production of functional nanocrystalline nitride ceramics with high porosity still occupying a relatively small volume, and otherwise not easily accessible.  相似文献   
3.
针对有机合成过程中碳及碳化物的残余,传统方法中普遍使用除碳的工艺,而很少有文章针对非晶碳的结构和形貌进行表征。为此,本文采用高尿素含量的前驱盐体系,通过在氮气保护气氛中煅烧获得AlN粉体。采用X射线衍射分析、红外和拉曼光谱分析、扫描电子显微镜和透射电子显微镜对850~1 500 ℃温度范围内煅烧获得产物的结构和形貌进行表征,对AlN合成过程中含碳产物结构形貌的变化,以及AlN和含碳产物之间相互的依存生长关系进行分析。结果表明,AlN生长的过程中伴随着无定形碳的石墨化转变,AlN颗粒的形貌也受含碳残余产物形貌的影响而出现有规律的变化。  相似文献   
4.
A urea‐containing, (Ph2P(R)PPh2)‐bridged, dinuclear, gold(I) thiolate complex, [Au2{Ph2PN(C6H4OMe‐4)PPh2}(SC6H4NHCONHC6H5)2] ( 1 ) was designed and synthesized and its photophysical and anion recognition properties studied. The results show that 1 has a high selectivity toward F?. Upon addition of F?, the yellow solution was decolorized, and drastic changes of emission and 1H and 31P{1H} NMR signals were observed. Interestingly, these changes are attributed to fluoride‐assisted P?N bond hydrolysis, instead of the expected hydrogen‐bonding interactions with the urea receptor. Similar changes were observed for two other basic anions, AcO? and H2PO4?, but to a much lesser extent; and these anions were found to bind to the urea receptor at the same time. On the other hand, Cl? was found to only bind to the urea moiety through hydrogen‐bonding interactions. Further studies with the control complex [Au2{Ph2PN(C6H4OMe‐4)PPh2}Cl2] ( 2 ) indicate that F? assists the hydrolysis process via cleavage of the P?N bond. DFT calculations were performed to study the reaction mechanism for the fluoride‐assisted P?N bond hydrolysis of 2 ; these provide a better insight into the role of fluoride in the hydrolysis.  相似文献   
5.
6.
Poly(carbonate‐urethane‐urea)s (PCUU) based on oligocarbonate diols (Mn ≈ 2000) with different length of the hydrocarbon chain as soft segments were synthesized and investigated. Carbonate oligomerols were obtained in a two‐step method from dimethyl carbonate (DMC) and linear α,ω‐diols (1,4‐butanediol, 1,5‐pentanediol, 1,6‐hexanediol, 1,9‐nonanediol, 1,10‐dekanediol and 1,12‐dodecanediol). Oligo(trimethylene carbonate) diol was synthesized using ring‐opening polymerization of trimethylence carbonate. PCUUs were obtained by prepolymer method using isophorone diisocyanate (IPDI) and water as a chain extender. Changes in polymers properties with increase of methylene group number between carbonate linkages were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), tensile strength and hardness measurements. The thermal stability was also analyzed by means of thermogravimetric analysis (TGA). Based on FTIR analysis influence of methylene groups number between carbonate linkages on phase separation and concentration of allophanate and biuret groups in the samples were investigated. The obtained poly(carbonate‐urethane‐urea)s exhibited very good mechanical properties. Tensile strength and elongation at break were 40 MPa and 400–600%, respectively, depending on the oligocarbonate used. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Formation of a hydrogen‐bond network via an amide group is a key driving force for the nucleation–elongation‐type self‐assembly that is often seen in biomolecules and artificial supramolecular assemblies. In this work, rod‐coil‐like aromatic compounds bearing an amide ( 1 a – 3 a ) or urea group ( 1 u – 3 u ) were synthesized, and their self‐assemblies on a 2‐D surface were investigated by scanning tunneling microscopy (STM). According to the quantitative analysis of the concentration dependence of the surface coverage, it was revealed that the strength of the hydrogen bond (i.e., amide or urea) and the number of non‐hydrogen atoms in a molecular component (i.e., size of core and length of alkyl side chain) play a primary role in determining the stabilization energy during nucleation and elongation processes of molecular ordering on the HOPG surface.  相似文献   
8.
In this article, a mathematical model was developed to describe and optimize the configuration of the urea biosensor. The biosensor is based on interdigitated gold microelectrodes modified with a urease enzyme membrane. The model presented here focuses on the enzymatic reaction and/or diffusion phenomena that occur in the enzyme membrane and in the diffusion layer. Numerical resolution of differential equations was performed using the finite difference technique. The mathematical model was validated using experimental biosensor data. The responses of the biosensor to various conditions were simulated to guide experiments, improve analytical performance, and reduce development costs.  相似文献   
9.
2D metal-organic framework (MOF) has potential applications in electrocatalysis owing to fast mass transfer, charge transfer and large specific surface area. Here, we had prepared three conductive 2D MOF based on Ni, NiCo and Co in a simple and rapid way. The 2D nanostructure of MOF was confirmed by SEM and TEM. The chemical composition was studied by XRD, Raman and XPS spectrum. The electrochemical oxidation and detection was investigated through cyclic voltammetry and current-time method. Their sensing performance for urea was determined by varying oxidation potentials and metal sites. The non-enzymatic Ni-, NiCo- and Co-MOF sensors had good catalytic activity for urea. Compared with NiCo- and Co-MOF, Ni-MOF had a wider linear range (0.5–832.5 μM), high sensitivity (1960 μA mM−1 cm−2), low detection limit (0.471 μM), and fast response time. The sensors had well repeatability, reproducibility, and selectivity to specific interfering species. Furthermore, Ni- and NiCo-MOF modified electrode was also applied to detection of milk samples. The results showed that the recovery was satisfactory, which further confirmed the effectiveness of non-enzyme sensor. In general, the highly-sensitive 2D Ni- and NiCo-MOF modified electrode has great potential as nonenzymatic urea sensors for real samples detection in hydrogen energy, clinical diagnostics, and environmental protection, et al.  相似文献   
10.
Three novel fully substituted urea derivative cyclotriphosphazene compounds 5–7 were synthesized by alkyne-azide 1,3-dipolar cycloaddition reaction of propargyl substituted ureas 2–4 with hexaazide substituted cyclotriphosphazene 1 in the presence of Cu(I) catalyst. All compounds were characterized with spectroscopic techniques such as FT-IR, 1H, 13C, and 31P nuclear magnetic resonance and mass spectroscopy. Also, the usefulness of compounds 5–7 as anion carriers was investigated by 1H NMR spectroscopy. For this purpose, 1H NMR spectra of compounds 5–7 were recorded in the presence of tetrabutylammonium fluoride in DMSO-d6. It was determined, that the urea protons in the compounds interact with fluoride.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号