首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   92篇
  国内免费   61篇
化学   491篇
晶体学   3篇
力学   31篇
综合类   1篇
数学   12篇
物理学   140篇
  2023年   10篇
  2022年   9篇
  2021年   14篇
  2020年   32篇
  2019年   18篇
  2018年   17篇
  2017年   13篇
  2016年   29篇
  2015年   23篇
  2014年   38篇
  2013年   92篇
  2012年   35篇
  2011年   33篇
  2010年   25篇
  2009年   32篇
  2008年   34篇
  2007年   22篇
  2006年   21篇
  2005年   27篇
  2004年   17篇
  2003年   13篇
  2002年   14篇
  2001年   7篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   14篇
  1996年   15篇
  1995年   8篇
  1994年   7篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1986年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有678条查询结果,搜索用时 16 毫秒
1.
Liuhua Xie 《中国物理 B》2022,31(6):67103-067103
The effect of strain on charge density wave (CDW) order in $\alpha$-U is investigated within the framework of relativistic density-functional theory. The energetical stability of $\alpha$-U with CDW distortion is enhanced by the tensile strain along $a$ and $b$ axes, which is similar to the case of negative pressure and normal. However, the tensile strain along $c$ axis suppresses the energetical stability of CDW phase. This abnormal effect could be understood from the emergence of a new one-dimensional atomic chain along $c$ axis in $\alpha$-U. Furthermore, this effect is supported by the calculations of Fermi surface and phonon mode, in which the topological objects and the dynamical instability show opposite behaviors between strains along $a$/$b$ and $c$ axes.  相似文献   
2.
解密铀元素     
简介了铀元素的发现历史、基本核性质、独特的电子结构以及相关的配位化学性质;同时,还介绍了铀元素在核燃料、分子催化、单分子磁体、超导等方面的应用。  相似文献   
3.
4.
Abstraction of iodide from [(η5‐C5iPr5)2UI] ( 1 ) produced the cationic uranium(III) metallocene [(η5‐C5iPr5)2U]+ ( 2 ) as a salt of [B(C6F5)4]?. The structure of 2 consists of unsymmetrically bonded cyclopentadienyl ligands and a bending angle of 167.82° at uranium. Analysis of the bonding in 2 showed that the uranium 5f orbitals are strongly split and mixed with the ligand orbitals, thus leading to non‐negligible covalent contributions to the bonding. Investigation of the dynamic magnetic properties of 2 revealed that the 5f covalency leads to partially quenched anisotropy and fast magnetic relaxation in zero applied magnetic field. Application of a magnetic field leads to dominant relaxation by a Raman process.  相似文献   
5.
The hierarchical assembly of well‐organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two‐fold nested super‐polyrotaxane substructure, which was synthesized through a uranyl‐directed hierarchical polythreading assembly of one‐dimensional polyrotaxane chains and two‐dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO2)3O(OH)2]2+, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9)°. Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super‐polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations.  相似文献   
6.
For 11 years now, the structural diversity and aesthetic beauty of uranyl–peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self‐assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO22+/H2O2/LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single‐crystal X‐ray diffraction, small‐angle X‐ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO22+ ratio: the uranyl–triperoxide monomer [UO2(O2)3]4?and the two capsules [(UO2)(O2)(OH)]2424?(U24) and [(UO2)(O2)1.5]2828?(U28). When the LiOH/U ratio is around three, U28 forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH4OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U28, which suggests that U28 is the kinetically favored species. Complete mapping of the pH–time phase space reveals only a narrow window of the U28 dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions.  相似文献   
7.
After more than 50 years, the synthesis and electronic structure of the first and only reported “U0 complex” [U(bipy)4] ( 1 ) has been reinvestigated. Additionally, its one‐electron reduced product [Na(THF)6][U(bipy)4] ( 2 ) has been newly discovered. High resolution crystallographic analyses combined with magnetic and computational data show that 1 and its derivative 2 are best described as highly reduced species containing mid‐to‐high‐valent uranium ligated by redox non‐innocent ligands.  相似文献   
8.
Low concentration ammonia is a widespread indoor air contaminant, which represents a considerable hazard to human health. The removal of ammonia can be difficult, especially when it is present at very low concentrations. In this study, we developed a new kind of mesoporous carbon with a high capacity for removing ammonia by adsorption. The ammonia-removing performance of this mesoporous carbon material was much better than that of activated carbon treated with nitric acid. The mesoporous carbon was prepared using aluminum phosphate as a hard template and contained a large number of oxygen-containing functional groups on its surface. The characterization results showed that the surface carboxyl and lactone groups play an important role in the adsorption of ammonia. For example, these groups could act as acidic sites capable of reacting with ammonia, and could therefore be responsible for the high capacity of mesoporous carbon to remove low ammonia contaminants under low concentration conditions.  相似文献   
9.
The diuranium(III) compound [UN′′2]2(μ‐η66‐C6H6) (N′′=N(SiMe3)2) has been studied using variable, high‐pressure single‐crystal X‐ray crystallography, and density functional theory . In this compound, the low‐coordinate metal cations are coupled through π‐ and δ‐symmetric arene overlap and show close metal? CH contacts with the flexible methyl CH groups of the sterically encumbered amido ligands. The metal–metal separation decreases with increasing pressure, but the most significant structural changes are to the close contacts between ligand CH bonds and the U centers. Although the interatomic distances are suggestive of agostic‐type interactions between the U and ligand peripheral CH groups, QTAIM (quantum theory of atoms‐in‐molecules) computational analysis suggests that there is no such interaction at ambient pressure. However, QTAIM and NBO analyses indicate that the interaction becomes agostic at 3.2 GPa.  相似文献   
10.
The HAsAsH molecule has hitherto only been proposed tentatively as a short‐lived species generated in electrochemical or microwave‐plasma experiments. After two centuries of inconclusive or disproven claims of HAsAsH formation in the condensed phase, we report the isolation and structural authentication of HAsAsH in the diuranium(IV) complex [{U(TrenTIPS)}2(μ‐η22‐As2H2)] ( 3 , TrenTIPS=N(CH2CH2NSiPri3)3; Pri=CH(CH3)2). Complex 3 was prepared by deprotonation and oxidative homocoupling of an arsenide precursor. Characterization and computational data are consistent with back‐bonding‐type interactions from uranium to the HAsAsH π*‐orbital. This experimentally confirms the theoretically predicted excellent π‐acceptor character of HAsAsH, and is tantamount to full reduction to the diarsane‐1,2‐diide form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号