首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  化学   2篇
  2020年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
可见-近红外光谱技术是对土壤速效磷含量定量估测的有效手段,但某一地区土壤采集的光谱数据建立的模型在给其它地区使用时会出现预测精度低、模型失效等问题。该文以皖南土壤样本为源域,皖北土壤样本为目标域,通过迁移学习方法建立了预测模型,以提高土壤速效磷预测模型的准确性,并比较了迁移前后预测模型的精度。结果显示,皖南地区模型不能直接用于皖北地区,会出现模型失效问题,该模型的决定系数(R~2)和相对分析误差(RPD)分别为-0.19和0.92,预测均方根误差(RMSEP)为1.04;样本量不大的皖北地区建立模型的预测精度不高,R~2和RPD分别为0.61和1.60,RMSEP为0.60;而基于迁移成分分析(TCA)并加入部分皖北样本建立模型,可显著提高对皖北样本的预测精度,模型的R~2和RPD分别提升至0.79和2.18,RMSEP降低至0.44。表明基于TCA的方法能将皖南土壤速效磷预测模型应用于皖北,可提高皖北土壤速效磷预测模型准确性并降低成本,为土壤速效磷预测模型的广泛应用提供了新思路。  相似文献
2.
该文以山羊绒与山羊绒/羊毛混纺织物以及纯棉与丝光棉织物为研究对象,使用其"动态"光谱,扩大类间的光谱差异信息,通过融合其同步和异步二维相关光谱,用多张动态光谱构造一张能反映细节化学差异信息的"化学图像"。使用GoogLeNet深度神经网络图像识别模型结合迁移学习,建立了一种光谱分类的新方法。收集了234个织物样品,制备水含量分别为0、5.4%、11.2%和16.3%的样本,同时采集样品的漫反射近红外光谱。使用干基样品的多种预处理光谱,利用线性分类方法簇类独立软模式识别(SIMCA)和非线性方法支持向量机(SVM),共建立了16个分类模型。其中,山羊绒与山羊绒/羊毛混纺织物的SIMCA和SVM最优预测正确率分别为63.33%和70.09%,纯棉与丝光棉织物的分别为71.02%和72.51%,均不能实现有效分类。新方法对山羊绒与山羊绒/羊毛混纺织物的预测正确率为92.59%,纯棉与丝光棉织物的为94.74%,获得了有效分类。该文首次将图像分类方法用于光谱分类识别,开辟了一种新的研究途径。针对实际应用能收集到的样品属于小样本,不能满足深度学习需要大数据样本的问题,使用迁移学习方法使深度学习框架适应了光谱分类(小样本),为人工智能领域中先进的识别技术用于解决化学问题提供了一个成功示范。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号