首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3072篇
  免费   403篇
  国内免费   728篇
化学   3428篇
晶体学   29篇
力学   77篇
综合类   68篇
数学   84篇
物理学   517篇
  2024年   2篇
  2023年   48篇
  2022年   77篇
  2021年   143篇
  2020年   182篇
  2019年   118篇
  2018年   96篇
  2017年   90篇
  2016年   162篇
  2015年   130篇
  2014年   166篇
  2013年   334篇
  2012年   233篇
  2011年   234篇
  2010年   178篇
  2009年   154篇
  2008年   179篇
  2007年   179篇
  2006年   220篇
  2005年   189篇
  2004年   155篇
  2003年   156篇
  2002年   98篇
  2001年   75篇
  2000年   71篇
  1999年   63篇
  1998年   53篇
  1997年   61篇
  1996年   59篇
  1995年   67篇
  1994年   47篇
  1993年   41篇
  1992年   25篇
  1991年   22篇
  1990年   13篇
  1989年   27篇
  1988年   15篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有4203条查询结果,搜索用时 15 毫秒
1.
《Mendeleev Communications》2022,32(1):123-125
The synthesis, structure and properties of copper(II) perchlorate complexes with antipyrine (AP), [Cu(AP)4(H2O)](ClO4)2 and [Cu(AP)5](ClO4)2, are described and compared with those of alternative compounds containing different AP ligands.  相似文献   
2.
Excessive amounts of reactive oxygen species (ROS), unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles (Fe 3 O 4 :MNPs) have attracted attention because of their peroxidase-like activity. In this study, hydroxyl radicals (•OH) generated by MNPs-catalyzed degradation of H 2 O 2 converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe into its colored DMPD•+ radical cation, which gave an absorbance maximum at λ = 553 nm. In the presence of antioxidants, •OH was partly scavenged by antioxidants and produced less DMPD• + , causing a decrease in the 553 nm-absorbance. Antioxidant concentrations were calculated with the aid of absorbance differences between the reference and sample solutions. The linear working ranges and trolox equivalent antioxidant capacity coefficients of different classes of antioxidants were determined by applying the developed method. In addition, binary and ternary mixtures of antioxidants were tested to observe the additivity of absorbances of mixture constituents. The method was applied to real samples such as orange juice and green tea. Student t-test, F tests, and the Spearman’s rank correlation coefficient were used for statistical comparisons.  相似文献   
3.
《Tetrahedron letters》2019,60(24):1582-1586
Rh(II)-catalyzed decomposition of certain cyclic α-diazocarbonyl compounds in the presence of cyclic ethers has been shown to give bicyclic ring expansion products. These are thought to arise from a [1,4]-alkyl shift toward the carbonyl oxygen atom and are in contrast with the recently observed spirocyclic products of a Stevens-type [1,2]-alkyl shift within the postulated oxonium ylide intermediate. Quantum chemical calculations performed at the B3LYP/6-31G* level of theory showed that the former reaction pathway (toward fused bicycles) is kinetically preferred.  相似文献   
4.
Studies on N2 activation and transformation by transition metal hydride complexes are of particular interest and importance. The synthesis and diverse transformations of a dinitrogen dititanium hydride complex bearing the rigid acridane-based acriPNP-pincer ligands {[(acriPNP)Ti]2(μ2-η1:η2-N2)(μ2-H)2} are presented. This complex enabled N2 cleavage and hydrogenation even without additional H2 or other reducing agents. Furthermore, diverse transformations of the N2 unit with a variety of organometallic compounds such as ZnMe2, MgMe2, AlMe3, B(C6F5)3, PinBH, and PhSiH3 have been well established at the rigid acriPNP-ligated dititanium framework, such as reversible bonding-mode change between the end-on and side-on/end-on fashions, diborylative N=N bond cleavage, the formal insertion of two dimethylaluminum species into the N=N bond, and the formal insertion of two silylene units into the N=N bond. This work has revealed many unprecedented aspects of dinitrogen reaction chemistry.  相似文献   
5.
A conspicuous detail of the so-called brown-ring test (the analytical test on nitrate) is the reddish color of the bottom layer of concentrated sulfuric acid, which develops upon the bleeding of the brown layer into the acid. Crystals of the same color form from a solution of ferrous sulfate in concentrated sulfuric acid on saturation with gaseous nitric oxide. The structure of this H3O[{Fe(NO)(μ4-SO4)(μ2-SO4)0.5}n/n] ( 1a ) is made up from infinite chessboard-type layers with sulfur on the field junctions and Fe(NO) moieties below the black and above the white fields. An Fe–N–O angle of about 160° causes disorder in the tetragonal space group I4/mmm. A similar crystal pathology was found in the related [{Fe(MeOH)(NO)(μ4-SO4)}n/n] ( 1b ) in the same crystal class. A one-dimensional coordination polymer is formed in crystals of a third compound that comprises the Fe(NO)O5 coordination pattern, namely the brown oxalato species [{Fe(H2O)(NO)(μ2-ox)}n/n · H2O] ( 2 ). A still larger NO tilt of about 156° is not obscured by disorder in the triclinic crystals of 2 .  相似文献   
6.
In implantable materials, surface topography and chemistry are the most important in the effective osseointegration and interaction with drug molecules. Therefore, structural and surface modifications of nanostructured titanium dioxide (TiO2) layers are reported in the present work. In particular, the modification of annealed TiO2 samples with —OH groups and silane derivatives, confirmed by X-ray photoelectron spectroscopy, is shown. Moreover, the ibuprofen release process was studied regarding the desorption-desorption-diffusion (DDD) kinetic model. The results proved that the most significant impact on the release profile is annealing, and further surface modifications did not change its kinetics. Additionally, the cell adhesion and proliferation were examined based on the MTS test and immunofluorescent staining. The obtained data showed that the proposed changes in the surface chemistry enhance the samples’ hydrophilicity. Moreover, improvements in the adhesion and proliferation of the MG-63 cells were observed.  相似文献   
7.
The pentamethylcyclopentadienyl N-heterocyclic carbene nickel complex [Ni(η5-C5Me5)Cl(IMes)] (IMes=1,3-dimesitylimidazol-2-ylidene) efficiently catalyses the anti-Markovnikov hydroboration of alkenes with catecholborane in the presence of a catalytic amount of potassium tert-butoxide, and joins the very exclusive club of nickel catalysts for this important transformation. Interestingly, the regioselectivity can be reversed in some cases by using pinacolborane instead of catecholborane. Mechanistic investigations involving control experiments, 1H and 11B NMR spectroscopy, cyclic voltammetry, piezometric measurements and DFT calculations suggest an initial reduction of the NiII precursor to a NiI active species with the concomitant release of H2. The crucial role of the alkoxo-catecholato-borohydride species resulting from the reaction of potassium tert-butoxide with catecholborane in the formation of an intermediate nickel-hydride species that would then be reduced to the NiI active species, is highlighted.  相似文献   
8.
Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li4Ti5O12 (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material at 143mAh g−1. Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti3+ ion concentration coupled with widening of the Li migration channel.  相似文献   
9.
A series of Ce-Fe-Ox catalysts prepared by the different calcination temperatures (marked as CF-X, where X represented calcination temperature) were used to the selectivity catalytic reduction of NOx by NH3. The results explained the relationship between calcination temperature and the sulfate species over Ce-Fe-Ox, and then investigated the surface acidity and catalytic performance. The large amounts of sulfate species were formed over CF-450 and CF-550 while it was decomposed with further the increasing of calcination temperature, which resulted in the loss of surface acidity, causing a decrease in the catalytic activity over Ce-Fe-Ox. Thereby, the CF-450 catalyst showed the best catalytic activity and over 90% NOx conversion was obtained at 244–450 °C. Besides, the favored pore structure, more Fe3+ active species, higher Ce3+ concentration and the abundance of chemical adsorbed oxygen species, as well as the surface acid sites, would together contribute to the excellent catalytic activity of CF-450 catalyst.  相似文献   
10.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号