首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   43篇
  国内免费   95篇
化学   322篇
晶体学   1篇
力学   1篇
综合类   1篇
数学   3篇
物理学   25篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   14篇
  2013年   19篇
  2012年   13篇
  2011年   22篇
  2010年   11篇
  2009年   10篇
  2008年   17篇
  2007年   17篇
  2006年   11篇
  2005年   17篇
  2004年   16篇
  2003年   16篇
  2002年   16篇
  2001年   15篇
  2000年   24篇
  1999年   22篇
  1998年   12篇
  1997年   3篇
  1996年   5篇
  1995年   10篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有353条查询结果,搜索用时 156 毫秒
1.
《Mendeleev Communications》2022,32(4):510-513
The influence of textural characteristics on the catalytic performance of supported KCoMoS2 catalysts was explored to provide essential information for the design of better catalysts for the synthesis of higher alcohols (C1–C5) from syngas. Syngas conversion was carried out over KCoMoS2 catalysts supported on various mesoporous (alumina and carbon-coated alumina) and microporous (two types of powdered activated carbons) materials. The experimental results show that catalysts supported over microporous materials exhibit higher catalytic activity in HAS from syngas than catalysts based on mesoporous materials.  相似文献   
2.
用大气压下火花放电方法和发射光谱原位诊断技术, 对CH4直接转化制乙炔和间接转化制合成气进行了研究, 并与介质阻挡放电进行了比较。结果表明, 火花放电具有能量效率高的突出优点, 能够高效地将CH4活化成C原子、H原子和C2等活泼物种。当CH4单独进料时, 能得到以C2H2为主的烃类产物。当CH4与CO2和O2共进料时, 能得到H2/CO比值可调的合成气产物。在用火花放电转化CH4和CO2制合成气时, 添加O2能够避免反应器的结炭问题, 反应温度只需225 ℃, 与常规催化法相比具有明显的低温优势。  相似文献   
3.
Perovskite oxides of the Ln0.5A0.5MnO3 (Ln=lanthanide, A=Sr, Ca) family have been investigated for the thermochemical splitting of H2O and CO2 to produce H2 and CO respectively. The amounts of O2 and CO produced strongly depend on the size of the rare earth ions and alkaline earth ions. The manganite with the smallest rare earth possessing the highest distortion and size disorder as well as the smallest tolerance factor, gives out the maximum amount of O2, and, hence, the maximum amount of CO. Thus, the best results are found with Y0.5Sr0.5MnO3, which possesses the highest distortion and size disorder. Y0.5Sr0.5MnO3 shows remarkable fuel production activity even at the reduction and oxidation temperatures as low as 1200 °C and 900 °C, respectively.  相似文献   
4.
徐艳  陈艳  宫贵贞  董黎明  王鹏  李靖  宋明 《化学教育》2019,40(20):70-74
以甲烷-二氧化碳重整制合成气为实例,设计探究性实验,将合成气的制备和现代分析技术应用于化工专业实验的教学实践中以提高学生的创新和实践能力。实验包括催化剂的制备,催化剂的性能评价和催化剂的表征等3大部分。采用工业最常用的浸渍法制备含有不同助剂的Ni/X/γ-Al2O3(X为Co,Fe,MgO,CeO2)催化剂,以甲烷-二氧化碳重整反应评价其催化性能,并采用XRD、H2-TPR、BET和TG对催化剂的微观结构进行表征。结合催化剂的性能评价结果和表征结果,探讨不同助剂对镍基催化剂性能的改善效果及机制。通过开设该实验,可以让学生了解化工学科的前沿知识以及现代分析技术的基本原理和用途,掌握专业的实验操作、数据处理和谱图绘制方法,提高学生的专业素养和综合能力。  相似文献   
5.
Photocatalytic syngas (CO and H2) production with CO2 as gas source not only ameliorates greenhouse effect, but also produces valuable chemical feedstocks. However, traditional photocatalytic systems require noble metal or suffers from low yield. Here, we demonstrate that S vacancies ZnIn2S4 (VS-ZnIn2S4) nanosheets are an ideal photocatalyst to drive CO2 reduction into syngas. It is found that building S vacancies can endow ZnIn2S4 with stronger photoabsorption, efficient electron–hole separation, and larger CO2 adsorption, finally promoting both hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). The syngas yield of CO and H2 is therefore significantly increased. In contrast to pristine ZnIn2S4, the syngas yield over VS-ZnIn2S4 can be improved by roughly ≈4.73 times and the CO/H2 ratio is modified from 1:4.18 to 1:1. Total amount of syngas after 12 h photocatalysis is as high as 63.20 mmol g−1 without use of any noble metals, which is even higher than those of traditional noble metal-based catalysts in the reported literatures. This work demonstrates the critical role of S vacancies in mediating catalytic activity and selectivity, and highlights the attractive ability of defective ZnIn2S4 for light-driven syngas production.  相似文献   
6.
CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.  相似文献   
7.
Utilizing sustainable energy for chemical activation of small molecules, such as CO2, to produce important chemical feedstocks is highly desirable. The simultaneous production of CO/H2 mixture (syngas) from photoreduction of CO2 and H2O is highly promising. However, the relationships between structure, composition, crystallinity, and photocatalytic performance are still indistinct. Here, amorphous ultrathin CoO nanowires and polyoxometalate incorporated nanowires with even lower crystallinity were synthesized. The POM-incorporated ultrathin nanowires exhibit high photocatalytic syngas production activity, reaching H2 and CO evolution rates of 11555 and 4165 μmol g−1 h−1 respectively. Further experiments indicate that the ultrathin morphology and incorporation of POM both contribute to the superior performance. Multiple characterizations reveal the enhanced charge–hole separation efficiency of the catalyst would facilitate the photocatalysis.  相似文献   
8.
Photoassisted steam reforming and dry (CO2) reforming of methane (SRM and DRM) at room temperature with high syngas selectivity have been achieved in the gas-phase catalysis for the first time. The catalysts used are bimetallic rhodium–vanadium oxide cluster anions of Rh2VO1–3. Both the oxidation of methane and reduction of H2O/CO2 can take place efficiently in the dark while the pivotal step to govern syngas selectivity is photo-excitation of the reaction intermediates Rh2VO2,3CH2 to specific electronically excited states that can selectively produce CO and H2. Electronic excitation over Rh2VO2,3CH2 to control the syngas selectivity is further confirmed from the comparison with the thermal excitation of Rh2VO2,3CH2, which leads to diversity of products. The atomic-level mechanism obtained from the well-controlled cluster reactions provides insight into the process of selective syngas production from the photocatalytic SRM and DRM reactions over supported metal oxide catalysts.  相似文献   
9.
MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-Al2O3 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied.  相似文献   
10.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号