首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1348篇
  免费   91篇
  国内免费   205篇
化学   1471篇
晶体学   10篇
力学   25篇
综合类   5篇
数学   12篇
物理学   121篇
  2023年   5篇
  2022年   6篇
  2021年   10篇
  2020年   12篇
  2019年   20篇
  2018年   23篇
  2017年   29篇
  2016年   47篇
  2015年   39篇
  2014年   39篇
  2013年   138篇
  2012年   86篇
  2011年   70篇
  2010年   72篇
  2009年   61篇
  2008年   82篇
  2007年   95篇
  2006年   82篇
  2005年   94篇
  2004年   90篇
  2003年   84篇
  2002年   64篇
  2001年   72篇
  2000年   33篇
  1999年   27篇
  1998年   31篇
  1997年   17篇
  1996年   15篇
  1995年   41篇
  1994年   36篇
  1993年   31篇
  1992年   33篇
  1991年   13篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1982年   4篇
  1981年   4篇
排序方式: 共有1644条查询结果,搜索用时 15 毫秒
1.
Polymer coating of tissue culture polystyrene (TCPS) surfaces promotes their biofunctionality, which can aid manipulation of cellular functions. However, the effect of the solvent used for polymer coating is yet to be elucidated. In this study, solvent‐treated TCPS surfaces using water, methanol, ethanol, 2‐propanol, and dimethyl sulfoxide are fabricated. Solvent treatment of TCPS surfaces is performed by spreading solvents onto the surfaces and allowing them to dry. Solvent treatment changes the surface roughness and wettability, depending on the kind of solvents. In addition, these surface property changes affected the extension, proliferation, and differentiation of human bone marrow–derived mesenchymal stem cells. These results suggest that solvent selection for polymer coating is crucial in the regulation of cell responses. Further, treatment with an appropriate solvent can result in a more suitable culture environment for modulating cellular functions.  相似文献   
2.
In this study, a novel application of radical addition‐coupling polymerization (RACP) for synthesis of hyperbranched polymers is reported. By Cu/PMDETA‐mediated RACP of 2‐methyl‐2‐nitrosopropane with trimethylolpropane tris(2‐bromopropionate) or a bromo‐ended 3‐arm PS macromonomer, two types of hyperbranched polymers with high degree of polymerization are synthesized under mild conditions, respectively. The chemical structures of the hyperbranched polymers are carefully characterized. By selective degradations of the ester groups and weak bonds of NO? C in the polymers, high degree of alternative connection of the two monomers in the synthesized polymers have been identified. Based on the experimental results, mechanism of formation of the hyperbranched polymer is proposed, which includes formation of carbon radicals from the tribromo monomer through single electron transfer, its capture by 2‐methyl‐2‐nitrosopropane that results in nitroxide radical, and cross‐coupling reaction of the nitroxide radical with other carbon radicals. Hyperbranched polymer can be formed in a step‐growth mode after multiple steps of such reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 904–913  相似文献   
3.
4.
In previous work we observed two simultaneous transitions in high molecular weight (MW) free‐standing polystyrene films that were interpreted as two thickness‐dependent reduced glass transition temperatures (Tgs). The weaker lower transition agreed well with the MW‐dependent Tg(h) previously reported, while the much stronger upper transition matched the MW‐independent Tg(h) previously observed in low‐MW free‐standing films. Here, we investigate the nature of these two transitions by inspecting the temperature dependence of the films' thermal coefficient of expansion (TCE) and present physical aging measurements using ellipsometry both below and in‐between the two transitions. TCE values indicate approximately 80 to 90% of the film solidifies at the upper transition, while only 10 to 20% remains mobile to lower temperatures, freezing out at the lower transition. Physical aging is observed at a temperature below the upper transition, but above the lower transition, indicative of the upper transition being an actual glass transition associated with the α‐relaxation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 64–75  相似文献   
5.
Properties of individual molecules of star-like polystyrene with calix[8]arene core in dilute chloroform solutions were studied using methods of static light scattering, translation diffusion, and viscometry. The solution behavior of the polymer investigated significantly differs from the properties of linear polymers. Star-like polystyrene macromolecules in solutions are characterized by compact structure—the hydrodynamic radius is not higher than 5.5?nm at M?=?125,000?g?mol?1. The shape of star-like polystyrene macromolecules differs slightly from spherical.  相似文献   
6.
Reflection electron energy loss spectra (REELS) were measured for five insulating organic compounds: Kapton, polyethylene (PE), poly(methyl methacrylate) (PMMA), polystyrene (PS) and polytetrafluoroethylene (PTFE), as well as for Ni and Si, in the energy range between 200 and 1600 eV. The average number of surface excitations for a single surface crossing were determined from the experimental data and were found to be considerably smaller than for earlier studied materials, which mainly consisted of elemental metals [Surf. Sci. 486(2001)L461]. The surface excitation parameter, a material parameter used to quantify the relative intensity of surface losses in (photo)electron spectroscopy, was extracted from the data and compared with values found in the literature. The results indicate that surface excitations only have a minor influence on quantification of XPS spectra of polymers. On the other hand, a correction for surface excitations turns out to be essential for measurements of the electron inelastic mean free path of polymers when a metal is used as reference material.  相似文献   
7.
N‐bromo‐hydantoin and N‐bromo‐5,5′‐dimethylhydantoin conjugated polystyrene beads were synthesized from chloromethyl polystyrene beads which differ in their particles size, crosslinking, nano‐micro porosity, and tunnels size on the surface, in order to study the effect of these parameters on oxidative halogen release and resultant activity, for water purification applications. The synthesized beads were characterized using elemental analysis, FT‐IR, solid state 13C‐NMR, and scanning electron microscope (SEM). The conjugation yield and kinetics in different solvents and bromine loading capacity were studied. The N‐bromoamine polystyrene beads were tested for water decontamination according to NSF 231 protocol. The release of active bromine was analyzed by spectrophotometer using a DPD‐1 kit and also studied the antimicrobial activity against Escherichia coli and MS2 phages. Bead's nano‐micro characteristics were found critical for oxidative halogen release control: rate stabilization and modulation, extension and also influences antimicrobial activity. The synthesized beads exhibited extended and stable release of bromine, 6 and 4 log reduction for E. coli and MS2, respectively for 250 L of passing contaminated water. Thus, N‐halamine hydantoins conjugated polystyrenes, chemically or kinetically release modified should have applications as disinfectants in water purification systems as well as medical field. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 596–610  相似文献   
8.
Stereoblock polypropylenes comprising of iPP and sPP segments are synthesized by polymerization of the following binary system of metallocenes: the Cs‐symmetric [2,7‐t‐Bu2(Flu)2Ph2C(Cp)ZrCl2] and the C2‐symmetric rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2ZrCl2. Blends of samples made either by each catalyst individually (solution blend) with materials obtained with the mixed catalyst system (reactor blend) are compared. The simultaneous presence of MAO and DEZ, enhancing fast and reversible transfer of the growing chains between the two active centers, leads to the formation of a stereoblock microstructure. In this case, low molecular weight polymers are obtained. The junction between the blocks is qualitatively observed in 13C NMR. When made in toluene, the stereoblock material consists of a majority of syndiotactic sequences, whereas the ratio is more equilibrated when the polymerization was conducted in the more polar chlorobenzene. This is confirmed by the results obtained with 13C NMR, CRYSTAF, HT HPLC, DSC, SSA, WAXD, and optical microscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1422–1434  相似文献   
9.
The first use of PSnb‐PEOmb‐PSn block copolymers (PS = polystyrene, PEO = poly(ethylene oxide)) as solid hosts for iodine/iodide electrolytes in dye‐sensitized solar cells (DSSCs) is described. Using the benchmark photosensitizer N719, DSSC based on the quasi solid‐state electrolytes afforded efficiencies up to 6.7%, to be compared with an efficiency of 7.3% obtained in similar conditions with a conventional iodine/iodide liquid electrolyte. By varying the PS:PEO relative volume ratio in the block copolymers different properties and morphologies were obtained. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 719–727  相似文献   
10.
Microplastics (MPs) have gained significant attention in the last two decades and have been widely researched in the marine environment. There are, however, less studies on their presence, routes of entry, and impacts on the biota in the soil environment. One of the main issues in the study of MPs is a lack of standardized methods for their identification in environmental samples. Currently the most commonly used techniques are thermal desorption gas chromatography–mass spectrometry (GC–MS) methods and pyrolysis followed by GC–MS. In this study, headspace-solid phase microextraction followed by GC–MS is proposed as a simple and widely applicable method for the determination of commonly present polymer MPs (polyethylene terephthalate, polystyrene, polyvinyl chloride, polyethylene, and polypropylene) in environmental samples, for analytical laboratories with basic equipment worldwide. The proposed method is based on the identification of compounds, which are formed during the well-controlled melting process of specific coarse (1–5 mm) and fine fraction (1 mm–100 μm) MPs. The method was upgraded for the identification of individual polymer type in blends and in complex environmental matrices (soil and algae biomass). The successful application of the method in complex matrices makes it especially suitable for widescale use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号