首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   68篇
  国内免费   490篇
化学   1991篇
晶体学   16篇
力学   51篇
综合类   21篇
数学   2篇
物理学   143篇
  2023年   7篇
  2022年   19篇
  2021年   28篇
  2020年   29篇
  2019年   45篇
  2018年   57篇
  2017年   82篇
  2016年   67篇
  2015年   45篇
  2014年   90篇
  2013年   249篇
  2012年   101篇
  2011年   93篇
  2010年   68篇
  2009年   96篇
  2008年   105篇
  2007年   102篇
  2006年   117篇
  2005年   113篇
  2004年   105篇
  2003年   75篇
  2002年   70篇
  2001年   46篇
  2000年   45篇
  1999年   52篇
  1998年   39篇
  1997年   39篇
  1996年   46篇
  1995年   39篇
  1994年   30篇
  1993年   18篇
  1992年   27篇
  1991年   17篇
  1990年   6篇
  1989年   7篇
  1988年   15篇
  1987年   6篇
  1986年   11篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
排序方式: 共有2224条查询结果,搜索用时 15 毫秒
1.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   
2.
将专业综合实验与科研成果相结合,设计了新型表面活性剂的合成与表征综合化学实验。实验涉及含羟基基团的表面活性剂的合成、纯化、结构表征和性能测定等操作。该综合实验将有机化学基础知识、表面活性剂的基本性质与前沿科学研究相结合,从而实现学生实验技能的提升、认知视野的拓展和综合能力培养的目标。  相似文献   
3.
In theory,nanobubbles can stably exist with a lifetime of microseconds at most,but numerous experimental observations demonstrate that nanobubbles in bulk solution can be stable from hours to weeks.Although various conjectures on the stability mechanism of bulk nanobubbles,such as the contaminant mechanism,skin mechanism,surface zeta potential mechanism,are proposed,there has not yet been a unified conclusion.Since bulk nanobubbles show great potential in a wide spectrum of applications and are relevant to a number of unsolved questions on cavitation and nucleation,the debate over their stability mechanisms has been active.In the past,extensive studies have been carried out to understand the mechanism of nanobubble stability,and important insights have already been provided.This paper will provide a brief overview of our current understanding of the unexpected stability of bulk nanobubbles.  相似文献   
4.
This minireview describes the strategies for synthesis of fiuorinated surfactants potentially nonbioaccumulable.Various strategies have been focused on(Ⅰ) reducing the length of the perfluorocarbon chain,(Ⅱ) introducing hetero atoms into the fluorocarbon chain,(Ⅲ) introducing branch(herein and after branch means the fluoro-carbon chain section is not straight).In most cases,the surface tensions versus the surfactant concentrations have been assessed.These above strategies led to various highly fiuorinated(perfluorinated or not perfluorinated) surfactants whose chemical changes enabled to obtain novel alternatives to perfluorooctanoic acid(PFOA) and perfluorooctane sulphonate(PFOS).  相似文献   
5.
Novel functionalized graphene adsorbent was prepared and characterized using different techniques. The prepared adsorbent was applied for the removal of cadmium ions from aqueous solution. A response surface methodology was used to evaluate the simple and combined effects of the various parameters, including adsorbent dosage, pH, and initial concentration. Under the optimal conditions, the cadmium removal performance of 70% was achieved. A good agreement between experimental and predicted data in this study was observed. The experimental results revealed of cadmium adsorption with high linearity follow Langmuir isotherm model with maximum adsorption capacity of 502 mg g?1, and the adsorption data fitted well into pseudo‐second order model. Thermodynamic studies showed that adsorption process has exothermic and spontaneous nature. The recommended optimum conditions are: cadmium concentration of 970 mg L?1, adsorbent dosage of 1 g L?1, pH of 6.18, and T = 25 °C. The magnetic recovery of the adsorbent was performed using a magnetic surfactant to form a noncovalent magnetic functionalized graphene. After magnetic recovery of the adsorbent both components (adsorbent and magnetic surfactant) were recycled by tuning the surface charges through changing the pH of the solution. Desorption behavior studied using HNO3 solution indicated that the adsorbent had the potential for reusability.  相似文献   
6.
Supramolecular organised materials were prepared from nonionic surfactants and the following macrocyclic ionic liquids: n-tert-butylthiacalix[4]arenes containing quaternary ammonium fragments with amino acid substituents. Tetraethylene glycol monododecyl ether and decadiethylene glycol monododecyl ether were used as nonionic surfactants. They form lamellar and hexagonal mesophases in aqueous media, respectively. Liquid crystal and structural properties of these systems were studied. Intermolecular interactions of system components leading to formation of lyomesophases were estimated. Molecular structure of thiacalixarene contributes to the formation of a hydrogen bonding with surfactants. This process, in turn, initiates formation of a denser packed hexagonal structure.  相似文献   
7.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   
8.
Precipitation or coprecipitation of polyelectrolytes has been largely investigated. However, the precipitation of polyelectrolytes via addition of charged and non‐charged surfactants has not been systematically studied and reported. Consequently, the aim of this work is to investigate the effect of different surfactants (anionic, cationic, non‐charged and zwitterionic) on the precipitation of cationic and anionic polymethylmethacrylate polymers (Eudragit). The surfactants effect has been investigated as a function of their concentration. Special attention has been dedicated to the CMC range and to the colloidal characterization of the formed dispersions. Moreover, the effect of salt (NaCl) and pH was also addressed. It is pointed out that non‐ionic and zwitterionic surfactants do not interact with charged Eudragit E100 and L100. For oppositely charged Eudragit E100/SDS and Eudragit L100/CTAB, precipitation occurs, and the obtained dispersions have been characterized in terms of particle size distribution and zeta potential. It was established that the binding of SDS molecules to Eudragit E100 polymer chains is made through the negative charges of the surfactant heads under the CMC value whereas binding of CTAB to Eudragit L100 chains is made at a CTAB concentration 5 times above its CMC. For Eudragit E100/SDS system, a more acidic medium induces aggregation. A same result was observed for the Eudragit L100/CTAB at a more basic pH. Moreover, it was observed that increasing salt concentration (higher than 100 mM) led to aggregation as generally observed for polycations/anionic surfactant systems.  相似文献   
9.
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin–macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.  相似文献   
10.
The synergism/inhibition level, solubilization sites and the total solubility (St) of co-solubilization systems of phenanthrene, anthracene and pyrene in Tween 80 and sodium dodecyl sulfate (SDS) are studied by 1H-NMR, 2D nuclear overhauser effect spectroscopy (NOESY) and rotating frame overhauser effect spectroscopy (ROESY). In Tween 80, inhibition for phenanthrene, anthracene and pyrene is observed in most binary and ternary systems. However, in SDS, synergism is predominant. After analysis, we find that the different synergism or inhibition situation between Tween 80 and SDS is related to the different types of surfactants used and the resulting different co-solubilization mechanisms. In addition, we also find that three polycyclic aromatic hydrocarbons (PAHs) have similar solubilization sites in both Tween 80 and SDS, which are almost unchanged in co-solubilization systems. Due to the similar solubilization sites, the chemical shift changes of surfactant and PAH protons follow the same pattern in all solubilization systems, and the order of chemical shift changes is consistent with the order of changes in the St of PAHs. In this case, it is feasible to evaluate St of PAHs by chemical shift. In both Tween 80 and SDS solutions, the ternary solubilization system has relatively high St rankings. Therefore, in practical applications, a good overall solubilization effect can be expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号