首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   17篇
  国内免费   26篇
化学   340篇
物理学   7篇
  2023年   2篇
  2022年   8篇
  2021年   4篇
  2020年   5篇
  2019年   9篇
  2018年   12篇
  2017年   18篇
  2016年   12篇
  2015年   15篇
  2014年   5篇
  2013年   35篇
  2012年   27篇
  2011年   16篇
  2010年   15篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   18篇
  2005年   14篇
  2004年   13篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
排序方式: 共有347条查询结果,搜索用时 31 毫秒
1.
建立了超高效液相色谱-四极杆/静电场轨道阱高分辨质谱(UPLC-Q/Orbitrap HRMS)非靶向筛查苹果中苯脲类农药的方法。样品采用QuEChERS法提取净化,Acquity BEH C18色谱柱(100 mm × 2.1 mm,1.7 μm)分离,以甲醇和含0.1%甲酸的水溶液为流动相进行梯度洗脱,在电喷雾正离子模式下采用四极杆/静电场轨道阱高分辨质谱进行检测。将13种苯脲类除草剂和9种苯甲酰脲类杀虫剂按化学结构分为4类。首先通过对4类22种典型苯脲类农药标准品的准分子离子和二级质谱碎片进行分析,总结苯脲类农药的质谱裂解规律如下:绿麦隆等9种苯脲类除草剂的主要特征离子碎片为m/z 72.044 59,可通过特征丢失中性分子二甲胺(m/z 45.058 03)产生特征离子碎片;绿谷隆等4种苯脲类除草剂可通过特征丢失中性分子甲醇[CH3OH]或卤化氢[HR1](R=Cl,Br,F)产生离子碎片;除虫脲等7种含氟苯甲酰脲杀虫剂的主要特征离子碎片为 m/z 158.040 47、141.015 00,也可发生特征中性丢失2,6-氟苯甲酰胺结构[C8H3F2O2NH2](m/z 183.013 21);杀铃脲等2种含氯苯甲酰脲类杀虫剂的主要特征离子碎片为m/z 156.020 25、138.993 76、113.015 28。利用该方法对北京12份市售苹果进行非靶向筛查,在1份样品中筛查出绿麦隆。该方法可为快速筛查农产品中相似结构特征的苯脲类化合物提供参考。  相似文献   
2.
A zirconium(IV)‐based metal–organic framework material (MOF‐808) has been synthesized in a simple way and used for the extraction of phenoxyacetic acids in complex samples. The material has good thermal and chemical stability, large specific surface area (905.36 m²/g), and high pore size (22.18 Å). Besides, it contains a large amount of Zr‐O groups, easy‐to‐form Zr‐O‐H bond with carboxyl groups of phenoxyacetic acids, and possesses biphenyl skeleton structure, easy to interact with compounds through π‐π and hydrophobic interactions. These characteristics make the material very suitable for the extraction of certain compounds with a high extraction efficiency and excellent selectivity. The extraction conditions were optimized, and then an analytical method was successfully established and applied for analysis of actual samples. The solid‐phase extraction method based on prepared material had a wide linear range of 0.2–250 μg/L and a low detection limit of 0.1–0.5 μg/L for four phenoxyacetic acid compounds including 2,4‐dichlorophenoxyacetic acid, 2‐(2,4‐dichlorophenoxy) propionic acid, 4‐chlorophenoxyacetic acid, and dicamba. The relative standard deviations of intra‐ and interday precision were 1.8–3.8 and 4.3–6.9%, and the recoveries after spiking were between 77.1 and 109.3%. The results showed that the material is a desired substituent for the extraction of compounds with benzene ring structure containing carboxyl groups.  相似文献   
3.
Triazines are widely used in agriculture around the world as selective pre‐ and post‐emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
The Li, Rb and Cs complexes with the herbicide (2,4‐dichlorophenoxy)acetic acid (2,4‐D), namely poly[[aqua[μ3‐(2,4‐dichlorophenoxy)acetato‐κ3O1:O1:O1′]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ4O1:O1′:O1′,Cl2]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ5O1:O1′:O1′,O2,Cl2]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two‐dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O‐atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six‐membered ring systems generate a one‐dimensional coordination polymeric chain which extends along b and interspecies water O—H...O hydrogen‐bonding interactions give the overall two‐dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb+ comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate Ocarboxy,Cl‐chelate interaction and three bridging carboxylate O‐atom bonding interactions from the 2,4‐D ligand. A two‐dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four‐membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua–carboxylate O—H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z′ = 2) irregular CsO6Cl coordination centres, each comprising two O‐atom donors (carboxylate and phenoxy) and a ring‐substituted Cl‐atom donor from the 2,4‐D ligand species in a tridentate chelate mode, two O‐atom donors from bridging carboxylate groups and one from a bridging water molecule. However, the two 2,4‐D ligands are conformationally very dissimilar, with one phenoxyacetate side chain being synclinal and the other being antiperiplanar. The minimum Cs...Cs separation is 4.4463 (5) Å. Structure extension gives coordination polymeric layers which lie parallel to (001) and are stabilized by intralayer water–carboxylate O—H...O hydrogen bonds.  相似文献   
5.
水稻是我国重要的粮食作物,但杂草对水稻的产量和品质产生了严重影响。 化学防除是治理水稻田杂草最有效的途径。 文中设计合成了苯环2,6-取代和2,5-取代两个系列磺酰脲类化合物,并通过核磁共振波谱仪(NMR)和高分辨质谱仪(HRMS)等对其进行了结构表征。 通过水稻田除草活性和安全性测试发现化合物在水稻田中具有较好的除草活性,尤其是化合物10a对水稻田中的主要杂草稗草和醴肠除草活性(目测初筛防效大于90%)优于对照药醚苯磺隆和氯磺隆,安全性与之相当。  相似文献   
6.
In this study, a convenient and sensitive analytical method based on dispersive solid-phase extraction (dSPE) and gas chromatography-tandem mass spectrometry in tandem was developed for the simultaneous determination of six chloroacetamide herbicides (acetochlor, alachlor, metolachlor, metazachlor, butachlor and pretilachlor) in soil. Parameters that could influence the extraction efficiency such as the varieties of solvents, the amount of solvents and sorbents were investigated. The optimized extractions were performed by mixing 5.0 g of dried soil with 10.0 mL acetonitrile, 10.0 mL deionized water and 4.0 g sodium chloride, and then the extract was purified with 50.0 mg N-propyl ethylenediamine (PSA), 50.0 mg C18, 10.0 mg graphitized carbon black (GCB) and 100.0 mg MgSO4 (5:5:1:10). At 5.0, 25.0 and 100.0 ng g?1 fortification levels for each analyte, the average obtained recoveries ranged from 87.7% to 108.0% with relative standard deviation (RSD) between 3.8% and 10.9%. The soil matrix effect of the six compounds were lower than 11.0%. The linear relation was observed in the range of 5.0–500.0 ng g?1 and the correlation coefficient (R2) of these compounds were higher than 0.998. The detection limits (LODs) were in the range of 0.2–1.0 ng g?1, and the limits of quantification (LOQs) were between 0.8 and 2.2 ng g?1. Comparing with the gas chromatography-electron capture detector (GC-ECD), the GC-tandem mass spectrometry (MS/MS) method can improve the anti-interference ability and thus get better separation of the chloroacetamide herbicides. Additionally, this method was verified to fit for soil samples with broad organic matter range (16.2 to 83.0 g kg?1). The developed method was successfully applied for analysing 26 field soil samples collected from Dianchi lake basin in the southeast of China. About 42.0% soil samples were detected with these herbicides, of which butachlor was the most frequently detected and the highest concentration was up to 137.0 ng g?1 in rape soil.  相似文献   
7.
A one-pot methodology to synthesize metastable bicyclic 2,5-dihydrooxepines from cyclic 1,3-diketones and 1,4-dibromo-2-butenes through the retro-Claisen rearrangement of syn-2-vinylcyclopropyl diketone intermediates is reported. DFT calculations were performed to understand the reaction selectivity and mechanisms towards [1,3]- or [3,3]-sigmatropic rearrangements, highlighting the crucial influence of the temperature. The reaction was successfully applied to a short protecting group-free total synthesis of radulanin A, a natural 2,5-dihydrobenzoxepine. Moreover, the strong herbicidal potential of this natural product is demonstrated for the first time.  相似文献   
8.
The ultrasound‐assisted ionic liquid foam flotation solid‐phase extraction of sulfonylurea herbicides in milk was developed and validated. The proteins and lipids were isolated from the sample matrix by adding salt and adjusting the pH value. The target analytes eluted from the solid‐phase extraction cartridge were determined by high‐performance liquid chromatography. Some experimental parameters, including the pH value of sample solution, amount of NaCl, ionic liquid type, extraction time, flow rate of carrier gas, flotation time, and solid‐phase extraction cartridge type were investigated and optimized. Under the optimized experimental conditions, the limits of detection for metsulfuron, pyrazosulfuron, chlorimuron‐ethyl, and nicosulfuron were 1.3, 0.6, 0.7, and 1.1 μg/L, respectively. When the present method was applied to the analysis of milk samples the recoveries of the analytes ranged from 84.3 to 105.2% and relative standard deviations were >5.7%.  相似文献   
9.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   
10.
A homogeneous liquid‐liquid extraction performed in narrow tube coupled to in–syringe‐dispersive liquid‐liquid microextraction based on deep eutectic solvent has been developed for the extraction of six herbicides from tea samples. In this method, sodium chloride as a separation agent is filled into the narrow tube and the tea sample is placed on top of the salt. Then a mixture of deionized water and deep eutectic solvent (water miscible) is passed through the tube. In this procedure, the deep eutectic solvent is realized as tiny droplets in contact with salt. By passing the droplets from the tea layer placed on the salt layer, the analytes are extracted into them. After collecting the solvent as separated layer, it is mixed with another deep eutectic solvent (choline chloride/butyric acid) and the mixture is dispersed into deionized water placed in a syringe. After adding acetonitrile to break up the cloudy state, the collected organic phase is injected into gas chromatography‐mass spectrometry. Under optimal conditions, limits of detection and quantification in the ranges of 2.6–8.4 and 9.7–29 ng/kg, respectively, were obtained. The extraction recoveries and enrichment factors in the ranges of 70–89% and 350–445 were obtained, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号