首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8563篇
  免费   1519篇
  国内免费   821篇
化学   6039篇
晶体学   277篇
力学   158篇
综合类   52篇
数学   50篇
物理学   4327篇
  2023年   62篇
  2022年   77篇
  2021年   162篇
  2020年   271篇
  2019年   232篇
  2018年   204篇
  2017年   279篇
  2016年   427篇
  2015年   395篇
  2014年   438篇
  2013年   795篇
  2012年   546篇
  2011年   689篇
  2010年   600篇
  2009年   654篇
  2008年   622篇
  2007年   652篇
  2006年   644篇
  2005年   514篇
  2004年   394篇
  2003年   403篇
  2002年   364篇
  2001年   224篇
  2000年   199篇
  1999年   156篇
  1998年   140篇
  1997年   143篇
  1996年   87篇
  1995年   97篇
  1994年   97篇
  1993年   59篇
  1992年   65篇
  1991年   38篇
  1990年   21篇
  1989年   24篇
  1988年   33篇
  1987年   15篇
  1986年   10篇
  1985年   8篇
  1984年   11篇
  1983年   7篇
  1982年   6篇
  1981年   8篇
  1980年   8篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.  相似文献   
2.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
3.
4.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   
5.
The heterostructured Ag nanoparticles decorated Fe3O4 Glutathione (Fe3O4‐Glu‐Ag) nanoparticles (NPs) were synthesized by sonicating glutathione (Glu) with magnetite and further surface immobilization of silver NPs on it. The ensuing magnetic nano catalyst is well characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), powder X‐ray diffraction (PXRD), thermogravimetric analysis (TGA). The prepared Fe3O4‐Glu‐Ag nanoparticles have proved to be an efficient and recyclable nanocatalyst with low catalyst loading for the reduction of nitroarenes and heteronitroarenes to respective amines in the presence of NaBH4 using water as a green solvent which could be easily separated at the end of a reaction using an external magnet and can be recycled up to 5 runs without any significant loss in catalytic activity. Gram scale study for the reduction of 4‐NP has also being carried out successfully and it has been observed that this method can serve as an efficient protocol for reduction of nitroarenes on industrial level.  相似文献   
6.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   
7.
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure–activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.  相似文献   
8.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   
9.
The syntheses, structures, and chemotherapeutic activities of Ag(I)‐, Au(I)‐, and Ru(II)‐complexes ligated to a novel N‐heterocyclic carbene ligand, 2‐(4‐nitrophenyl)imidazo[1,5‐a]pyridin‐2‐ylidene ( 1 ), are described. The corresponding complexes, [Ag( 1 )2][PF6], [Au( 1 )2][PF6] ( 3 ), and [Ru( 1 )(p‐cymene)Cl][PF6] ( 4 ), were prepared using convenient transmetallation chemistry and characterized using a range of spectroscopic and analytical techniques. X‐ray crystallography revealed that complexes 2 and 3 adopted linear structures whereas 4 exhibited a prototypical “piano‐stool”‐like geometry; the structural assignments were further supported by DFT calculations. A series of in vitro studies revealed that while the aforementioned Ag(I), Au(I) and Ru(II) complexes exhibited significant cytotoxicities against the human colon adenocarcinoma (HCT 116), lung cancer (A549), and breast cancer (MCF7) cell lines, the Ru derivative was most prominent.  相似文献   
10.
In this study, nanocrystalline cellulose (NCC) prepared from microcrystalline cellulose using high‐intensity ultrasonication as mechanical method without any chemical treatment. The obtained NCC with around 30–50 nm diameters, utilized as support, reducing and stabilizing agent for in‐situ green and eco‐friendly synthesis of silver nanoparticles (Ag NPs). The catalytic activity of composite was examined for degradation of environmental pollutants. The structure of as‐synthesized composite (Ag@NCC) was characterized by ultraviolet–visible spectroscopy (UV–vis), field emission scanning electron microscopy (FE‐SEM); Transmission electron microscopy (TEM); Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The results of the catalytic reaction experiments showed that spherically shaped silver nanoparticles of around 20 nm distributed on the surface of nanocellulose demonstrated high catalytic efficiency towards the removal of methyl orange (MO) and 4‐nitrophenol (4‐NP).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号