首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   23篇
  国内免费   86篇
化学   344篇
力学   1篇
综合类   5篇
数学   5篇
物理学   44篇
  2023年   15篇
  2022年   5篇
  2021年   24篇
  2020年   13篇
  2019年   17篇
  2018年   11篇
  2017年   16篇
  2016年   7篇
  2015年   18篇
  2014年   19篇
  2013年   24篇
  2012年   18篇
  2011年   20篇
  2010年   20篇
  2009年   18篇
  2008年   22篇
  2007年   23篇
  2006年   16篇
  2005年   10篇
  2004年   11篇
  2003年   14篇
  2002年   9篇
  2001年   15篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1986年   2篇
排序方式: 共有399条查询结果,搜索用时 31 毫秒
1.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
2.
In this study, magnetic nitrogen‐doped carbon (MNC) was fabricated through facile carbonization and activation of natural silk cocoons containing nitrogen and then combined with Fe3O4 nanoparticles to create a good support material for palladium. Palladium immobilization on the support resulted in the formation of magnetic nitrogen‐doped carbon‐Pd (MNC‐Pd). The prepared heterogeneous catalyst was well characterized using FT‐IR, TGA, EDX, FE‐SEM, XRD, VSM, and ICP‐OES techniques. Thereafter, the synthesis of biaryl compounds was conducted to investigate the catalyst performance via the reaction of aryl halides and phenylboronic acid. Further, the catalyst could be used and recycled for six consecutive runs without any significant loss in its activity.  相似文献   
3.
In vitro production of sperm is a desirable idea for fertility preservation in azoospermic men and prepubertal boys suffering from cancer. In this study, a biocompatible porous scaffold based on a triad mixture of silk fibroin (SF), alginate (Alg), and laminin (LM) is developed to facilitate the differentiation of mouse spermatogonia stem cells (SSCs). Following SF extraction, the content is analyzed by SDS-PAGE and stable porous 3D scaffolds are successfully prepared by merely Alg, SF, and a combination of Alg-SF, or Alg-SF-LM through freeze-drying. Then, the biomimetic scaffolds are characterized regarding the structural and biological properties, water absorption capacity, biocompatibility, biodegradability, and mechanical behavior. Neonatal mice testicular cells are seeded on three-dimensional scaffolds and their differentiation efficiency is evaluated using real-time PCR, flow cytometry, immunohistochemistry. Blend matrices showed uniform porous microstructures with interconnected networks, which maintained long-term stability and mechanical properties better than homogenous structures. Molecular analysis of the cells after 21 days of culture showed that the expression of differentiation-related proteins in cells that are developed in composite scaffolds is significantly higher than in other groups. The application of a composite system can lead to the differentiation of SSCs, paving the way for a novel infertility treatment landscape in the future.  相似文献   
4.
Microneedles are a promising transdermal drug delivery system that has the advantages of minimal invasiveness, painlessness, and on-demand drug delivery compared with commonly used medical techniques. Natural resources are developed as next-generation materials for microneedles with varying degrees of success. Among them, silk fibroin is a natural polymer obtained from silkworms with good biocompatibility, high hardness, and controllable biodegradability. These properties provide many opportunities for integrating silk fibroin with implantable microneedle systems. In this review, the research progress of silk fibroin microneedles in recent years is summarized, including their materials, processing technology, detection, drug release methods, and applications. Besides, the research and development of silk fibroin in a multidimensional way are analyzed. Finally, it is expected that silk fibroin microneedles will have excellent development prospects in various fields.  相似文献   
5.
In this study, flexible silk fibroin protein and biocompatible barium hexaferrite (BaM) nanoparticles were combined and electrospun into nanofibers, and their physical properties could be tuned through the mixing ratios and a water annealing process. Structural analysis indicates that the protein structure of the materials is fully controllable by the annealing process. The mechanical properties of the electrospun composites can be significantly improved by annealing, while the magnetic properties of barium hexaferrite are maintained in the composite. Notably, in the absence of a magnetic field, cell growth increased slightly with increasing BaM content. Application of an external magnetic field during in vitro cell biocompatibility study of the materials demonstrated significantly larger cell growth. We propose a mechanism to explain the effects of water annealing and magnetic field on cell growth. This study indicates that these composite electrospun fibers may be widely used in the biomedical field for controllable cell response through applying different external magnetic fields.  相似文献   
6.
The current technology of air‐filtration materials for protection against highly toxic chemicals, that is, chemical‐warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self‐cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal–organic framework (MOF) materials to develop advanced self‐detoxifying adsorbents of chemical‐warfare agents containing hydrolysable P? F, P? O, and C? Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air‐permeation properties of the textiles with the self‐detoxifying properties of the MOF material.  相似文献   
7.
8.
9.
Natural silk as a biodegradable, biocompatible, renewable, green and abundant biomaterial was used as a support for chemical immobilization of a water‐soluble manganese(II) complex with a phthalocyanine ligand possessing covalent binding ability. The prepared manganese(II) tetrasulfophthalocyanine complex supported on natural silk revealed efficient catalytic activity and reusability for the synthesis of benzoxazepine derivatives in water at room temperature.  相似文献   
10.
A two‐step method was used to fabricate the hydroxyapatite (HAP)/silk fibroin (SF) scaffolds, i.e. the nano‐sized HAP/SF composite powders were prepared by co‐precipitation, which were then blended with SF solution to fabricate the HAP/SF composite scaffolds. The obtained scaffolds showed a 3D porous structure. The porosity was higher than 90% with the average macropore size of 214.2 µm. Moreover, the nano‐sized HAP/SF composite powders were uniformly dispersed in the silk fibroin matrix, which provided the scaffolds enhanced compressive properties. The cell culture assay showed that the scaffolds fabricated by the two‐step method could improve the cell proliferation and osteogenic differentiation when compared with those prepared by the conventional one‐step blending method. The results suggested that the two‐step method could promote the uniform dispersion of HAP in the SF matrix and efficient combination between the HAP and the matrix, which may provide a potential application in the composite scaffold preparation for tissue engineering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号