首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8888篇
  免费   1034篇
  国内免费   183篇
化学   7318篇
晶体学   7篇
力学   28篇
综合类   4篇
数学   26篇
物理学   2722篇
  2023年   71篇
  2022年   97篇
  2021年   174篇
  2020年   337篇
  2019年   263篇
  2018年   231篇
  2017年   170篇
  2016年   346篇
  2015年   329篇
  2014年   427篇
  2013年   667篇
  2012年   407篇
  2011年   480篇
  2010年   377篇
  2009年   448篇
  2008年   435篇
  2007年   486篇
  2006年   433篇
  2005年   365篇
  2004年   316篇
  2003年   334篇
  2002年   152篇
  2001年   122篇
  2000年   127篇
  1999年   114篇
  1998年   111篇
  1997年   85篇
  1996年   88篇
  1995年   113篇
  1994年   56篇
  1993年   53篇
  1992年   42篇
  1991年   40篇
  1990年   28篇
  1988年   23篇
  1987年   24篇
  1985年   92篇
  1984年   117篇
  1983年   106篇
  1982年   149篇
  1981年   113篇
  1980年   97篇
  1979年   100篇
  1978年   106篇
  1977年   144篇
  1976年   118篇
  1975年   129篇
  1974年   164篇
  1973年   131篇
  1972年   82篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
曾彦  梁浩  管诗雪  王俊普  梁文嘉  黄梦阳  彭放 《中国物理 B》2022,31(1):16104-016104
Structural stability in terms of the decomposition temperature in LiMn2O4 was systematically investigated by a series of high-temperature and high-pressure experiments.LiMn2O4 was found to have structural stability up to 5 GPa at room temperature.Under ambient pressure,the compound decomposed at 1300℃.The decomposition temperature decreased with increasing pressure,yielding more complex decomposed products.Below the decomposition temperature,the crystal structure of LiMn2O4 varied with pressure.The presented results in this study offer new insights into the thermal and pressure stability of LiMn2O4 materials as a cathode for lithium-ion batteries that can operate under extreme conditions.Therefore,these findings may serve as a useful guide for future work for improving lithium-ion batteries.  相似文献   
2.
This is the first of two articles(Part I and Part II)that presents the results of the new atomic mass evaluation,Ame2020.It includes complete information on the experimental input data that were used to derive the tables of recommended values which are given in Part II.This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction,decay and mass-spectrometric data which were used in a least-squares fit adjustment in order to determine the recommended mass values and their uncertainties.All input data,including both the accepted and rejected ones,are tabulated and compared with the adjusted values obtained from the least-squares fit analysis.Differences with the previous Ame2016 evaluation are discussed and specific examples are presented for several nuclides that may be of interest to Ame users.  相似文献   
3.
The reaction cross-sections of 124Xe(n, 2n)123Xe, 126Xe(n, 2n)125Xe, 128Xe(n, 2n)127Xe, 130Xe(n, 2n)129mXe, 132Xe(n, 2n)131mXe, 130Xe(n, p)130I, 131Xe(n, p)131I, and 132Xe(n, p)132I were measured at the 13.5, 13.8, 14.1, 14.4, and 14.8 MeV neutron energies. The monoenergetic neutrons were generated via the 3H(d,n)4He reaction at the China Academy of Engineering Physics using the K-400 Neutron Generator with a solid 3H-Ti target. A high-purity germanium detector was employed to measure the activities of the product. The reactions 93Nb(n, 2n)92mNb and 27Al(n, α)24Na were adopted for neutron flux calibration. The cross sections of the (n, 2n) and (n, p) reactions of the xenon isotopes were obtained within the 13–15 MeV neutron energy range. These cross-sections were then compared with the IAEA-exchange format (EXFOR) database-derived experimental data, together with the evaluation results of the CENDL-3, ENDF/B-VIII.0, JENDL-4.0, RUSFOND, and JEFF-3.3 data libraries, as well as the theoretical excitation function obtained using the TALYS-1.95 code. The cross-sections of the reactions (except for the 124Xe(n, 2n)123Xe and 132Xe(n, p)132I) at 13.5, 13.8, and 14.1 MeV are reported for the first time in this study. The obtained results are beneficial in providing better cross-section constraints for the reactions in the 13–15 MeV region, thus improving the quality of the corresponding database. Meanwhile, these data can also be used for the verification of relevant nuclear reaction model parameters.  相似文献   
4.
The imidazo[1,2‐a]pyridines are an important target in organic synthetic chemistry and have attracted critical attention of chemists mainly due to the discovery of the interesting properties exhibited by a great number of imidazo[1,2‐a]pyridine derivatives. Although lots of synthetic methods of imidazo[1,2‐a]pyridines have been developed in the past years, the chemistry community faces continuing challenges to use green reagents, maximize atom economy and enrich the functional group diversity of product. Undoubtedly, with its low cost and lack of environmentally hazardous byproducts, cascade reactions and C?H functionalizations are ideal strategies for this field. In this record we highlight some of our progress toward the goal to synthesis of imidazo[1,2‐a]pyridine derivatives through carbene transformations or C?H functionalizations.  相似文献   
5.
In this work, a novel, convenient, and efficient approach to the synthesis of pyrano[2,3-h]coumarins has been reported based on the multicomponent reaction. The one-pot reaction between 5,7-dihydroxy-4-methylcoumarin, dialkyl acetylenedicarboxylate and aromatic aldehydes catalyzed by sodium carbonate lead to the formation of a novel class of pyrano[2,3-h]coumarin derivatives. High atom-economy, excellent yields, simple procedure, and mild reaction conditions are the important features of this protocol. This method allows access to a variety of pyrano[2,3-h]coumarins via using a broad substrate scope.  相似文献   
6.
Ethanol conversion to high-value-added products has attracted considerable attention in both academic research and industrial fields. In this study, we synthesized a series of tunable acid–base bifunctional Zn-Zr-Al metal oxides (represented as Zn2ZrxAl-MMO) in light of the structural topotactic transformation of Zn2ZrxAl-hydrotalcite precursors (Zn2ZrxAl-LDH). The resulting Zn2ZrxAl-MMO catalysts were employed in the conversion of ethanol to diethyl carbonate. The Zr4+ ion content of the LDH precursor plays a key role in modulating the acid-base properties and determining catalytic performance: the Zn2Zr0.1Al-MMO sample exhibits the optimal catalytic behavior with a diethyl carbonate (DEC) yield of 42.1%, which is the highest reported for metal oxide catalysts. Structure-property correlation investigations revealed that the synergic catalysis between medium-strong basic sites and weak acid sites plays a predominant role in the catalytic behavior. Furthermore, in situ Fourier transform infrared measurements showed that the weak acidic site promotes activation adsorption of the reactant (urea) and the intermediate product (ethyl carbamate), while the medium-strong basic site accelerates ethanol activation. Moreover, the Zn2Zr0.1Al-MMO catalyst has the advantages of cost effectiveness, good stability, and reusability. Therefore, the acid-base bifunctional catalysts developed in this work can be employed as promising candidates in acid-base catalytic reactions such as ethanol conversion.  相似文献   
7.
A new protocol based on lipase-catalyzed tandem reaction toward α,β-enones/enoesters is presented. For the synthesis of the desired products the tandem process based on enzyme-catalyzed hydrolysis and Knoevenagel reaction starting from enol acetates and aldehyde is developed. The relevant impact of the reaction conditions including organic solvent, enzyme type, and temperature on the course of the reaction was revealed. It was shown that controllable release of the active methylene compound from the corresponding enol carboxylate ensured by enzymatic reaction diminishes significantly the formation of the unwanted co-products. Furthermore, this protocol was extended by including a second tandem chemoenzymatic transformation engaging various aldehyde precursors. After a careful optimization of the reaction conditions, the target products were obtained with yields up to 86 % and with excellent E/Z-selectivity.  相似文献   
8.
Thiouracil‐containing depsipeptides were produced via one‐pot four‐component condensation/Passerini tandem reaction of thiouracil, 2‐chloroacetic acid derivatives, ketones, and isocyanides in ionic liquid as green reaction media in high yields.  相似文献   
9.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
10.
This Minireview summarises recent developments in the biosynthesis of diterpenes by diterpene synthases in bacteria. It is structured by the class of enzyme involved in the first committed step towards diterpenes, starting with type I diterpene synthases, followed by type II enzymes and the more recently discovered UbiA‐related diterpene synthases. A special emphasis lies on the reaction mechanisms of diterpene synthases that convert simple linear precursors through cationic cascades into structurally complex, usually polycyclic carbon skeletons with multiple stereogenic centres. A further main focus of this Minireview is a discussion of how these mechanisms can be unravelled. Downstream modifications to bioactive molecules are also covered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号