首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15116篇
  免费   1281篇
  国内免费   1551篇
化学   16577篇
晶体学   207篇
力学   17篇
综合类   49篇
数学   412篇
物理学   686篇
  2024年   4篇
  2023年   141篇
  2022年   226篇
  2021年   375篇
  2020年   637篇
  2019年   548篇
  2018年   410篇
  2017年   421篇
  2016年   564篇
  2015年   469篇
  2014年   597篇
  2013年   1086篇
  2012年   1596篇
  2011年   720篇
  2010年   617篇
  2009年   826篇
  2008年   910篇
  2007年   1067篇
  2006年   833篇
  2005年   783篇
  2004年   719篇
  2003年   613篇
  2002年   410篇
  2001年   341篇
  2000年   290篇
  1999年   275篇
  1998年   223篇
  1997年   311篇
  1996年   318篇
  1995年   347篇
  1994年   244篇
  1993年   204篇
  1992年   185篇
  1991年   132篇
  1990年   87篇
  1989年   71篇
  1988年   63篇
  1987年   50篇
  1986年   44篇
  1985年   33篇
  1984年   35篇
  1983年   12篇
  1982年   27篇
  1981年   14篇
  1980年   18篇
  1979年   14篇
  1978年   8篇
  1977年   7篇
  1975年   4篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Coordination within and between organisms is one of the most complex abilities of living systems, requiring the concerted regulation of many physiological constituents, and this complexity can be particularly difficult to explain by appealing to physics. A valuable framework for understanding biological coordination is the coordinative structure, a self-organized assembly of physiological elements that collectively performs a specific function. Coordinative structures are characterized by three properties: (1) multiple coupled components, (2) soft-assembly, and (3) functional organization. Coordinative structures have been hypothesized to be specific instantiations of dissipative structures, non-equilibrium, self-organized, physical systems exhibiting complex pattern formation in structure and behaviors. We pursued this hypothesis by testing for these three properties of coordinative structures in an electrically-driven dissipative structure. Our system demonstrates dynamic reorganization in response to functional perturbation, a behavior of coordinative structures called reciprocal compensation. Reciprocal compensation is corroborated by a dynamical systems model of the underlying physics. This coordinated activity of the system appears to derive from the system’s intrinsic end-directed behavior to maximize the rate of entropy production. The paper includes three primary components: (1) empirical data on emergent coordinated phenomena in a physical system, (2) computational simulations of this physical system, and (3) theoretical evaluation of the empirical and simulated results in the context of physics and the life sciences. This study reveals similarities between an electrically-driven dissipative structure that exhibits end-directed behavior and the goal-oriented behaviors of more complex living systems.  相似文献   
2.
In this paper we analyze some classes of abstract simplicial complexes relying on algebraic models arising from module theory. To this regard, we consider a left-module on a unitary ring and find models of abstract complexes and related set operators having specific regularity properties, which are strictly interrelated to the algebraic properties of both the module and the ring.Next, taking inspiration from the aforementioned models, we carry out our analysis from modules to arbitrary sets. In such a more general perspective, we start with an abstract simplicial complex and an associated set operator. Endowing such a set operator with the corresponding properties obtained in our module instances, we investigate in detail and prove several properties of three subclasses of abstract complexes.More specifically, we provide uniformity conditions in relation to the cardinality of the maximal members of such classes. By means of the notion of OSS-bijection, we prove a correspondence theorem between a subclass of closure operators and one of the aforementioned families of abstract complexes, which is similar to the classic correspondence theorem between closure operators and Moore systems. Next, we show an extension property of a binary relation induced by set systems when they belong to one of the above families.Finally, we provide a representation result in terms of pairings between sets for one of the three classes of abstract simplicial complexes studied in this work.  相似文献   
3.
4.
《Mendeleev Communications》2022,32(2):226-227
We report a nickel tetrathiooxalate (NiTTO) coordination polymer as a cathode material for potassium batteries. In a potential range of 1.3–3.6 V vs. K+/K, the specific capacity of the material is 209 mA h g?1 at a current density of 0.1 A g?1, which roughly corresponds to the two-electron reduction of polymer repeating units. The charge–discharge mechanisms of NiTTO in potassium cells were examined using operando Raman spectroscopy.  相似文献   
5.
Complexes of transition metals [Co(II), Cd(II) and Mo(0)] with a new enaminone (PA) 3-chloro-4-((4-methoxyphenyl)amino)pent-3-en-2-one were synthesized and afterwards characterized by 1H NMR, 13C NMR, FAB-MS, UV–Vis, ICP-OES, TGA and FTIR. The spectroscopic and conductance data suggested that the ligand (PA) is attached to the metal ions in bidentate, neutral form through the nitrogen atom of amino group and the oxygen of carbonyl group. Metal complexes displayed octahedral geometries. In vitro urease inhibition and cytotoxic activities of all the compounds were evaluated. Results revealed that Co(II) complex (PA-Co) was even more significant than the reference drug thiourea. Analysis of the cytotoxicity indicated that, the Co(II) complex has more cytotoxic effect than enaminone ligand and other complexes when assessed on the human cancer cell lines MCF-7.Molecular docking simulation was also performed to find out the putative binding mode within the target protein.  相似文献   
6.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
7.
In this paper, a novel Zn(II) and Co(II) Schiff base complexes were synthesized by template method via refluxing 2,3-Naphthalenedicarboxaldehyde, Metal(II) chloride (Metal = Zn or Co), and L-phenylalanine. ZnO and Co3O4 nanoparticles were synthesized by thermal decomposition of Zn(II) and Co(II) complexes, respectively. The products were characterized using different instruments such as CHN, Conductivity, FT-IR, XRD, HR-TEM, and UV–Vis spectrophotometer. The experimental results of elemental analysis for Zn(II) and Co(II) complexes, agree with the calculated results, indicating that the Zn(II) and Co(II) complexes have 1:1 ligand/metal ratios. The molar conductance of the Zn(II) and Co(II) complexes, is less than 5 Ω?1cm?1mol?1, confirming the non-electrolytic nature of the synthesized complexes. The average crystallite diameter of the ZnO and Co3O4 samples is 39.64 and 30.38 nm, respectively. The optical energy gap of the ZnO and Co3O4 samples are 2.75 and 3.25 eV, respectively. Methylene blue dye was utilized to examine the photocatalytic properties of the synthesized nanoparticles using UV irradiations in the absence and presence of hydrogen peroxide. The % degradation of the methylene blue dye in the presence of hydrogen peroxide using ZnO and Co3O4 samples after 40 min is 94.55 and 98.98, respectively. Six pathogenic microbes were utilized to examine the antimicrobial properties of the synthesized Schiff base complexes and their nanoparticles: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus species, Aspergillus species, and Candida species. Zn(II) and Co(II) complexes display inhibition towards all the studied microbes. Besides, ZnO and Co3O4 nanoparticles exhibit less inhibition towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus species. Moreover, ZnO and Co3O4 nanoparticles have no activity towards Aspergillus and Candida species.  相似文献   
8.
New lanthanide dimethyl-N-benzoylamidophosphate (HL) based tetrakis-complexes NEt4[LnL4] (Ln3+=La, Nd, Sm, Eu, Gd, Tb, Dy) are reported. The complexes are characterized by means of NMR, IR, absorption, and luminescent spectroscopy as well as by elemental, X-Ray, and thermal gravimetric analyses. The phenyl groups of the four ligands of the complex anion are directed towards one side, while the methoxy groups are directed in the opposite side, which makes the complexes under consideration structurally similar to calixarenes. The effect of changing the alkali metal counterion to the organic cation NEt4+ on the structure and properties of the tetrakis-complex [LnL4]- is analyzed. The complexes exhibit bright characteristic for respective lanthanides luminescence. Rather high intensity of the band of 5D07F4 transition, observed in the luminescence spectrum of NEt4[EuL4], is discussed based on theoretical calculations.  相似文献   
9.
调节待测体系的pH值是配位滴定中一种重要的选择性滴定手段。采用CTE1.0程序计算了不同酸度条件下的终点误差,同时用配位滴定法测定了模拟样品和市售药品中的锌含量。计算结果和实测结果均表明,在不含钙离子的待测体系中,测定锌离子含量的合适酸度条件为pH=6;在钙、锌混合离子溶液中,测定锌含量的合适酸度条件为pH=5。平行测定实验的相对标准误差为1.63%,加标回收率为99.1%-101.8%。  相似文献   
10.
徐涵  潘兆瑞  亓昭鹏  孙洁 《无机化学学报》2022,38(12):2479-2490
在溶剂热条件下,合成了3个基于V型配体的Zn(Ⅱ)金属有机骨架:{[Zn2(BIDPS)2(OBA)2]·DMA}n(1)、{[Zn (BIDPT)(PA)]·DMF}n(2)和{[Zn (BIDPS)(PA)(H2O)2]·2H2O}n(3)(BIDPS=4,4''-二(1-咪唑基)苯砜,H2OBA=4,4''-二苯醚二甲酸,H2PA=帕莫酸,BIDPT=4,4''-二(1-咪唑基)苯硫醚)。利用X射线单晶衍射、红外光谱、元素分析、热重分析、X射线粉末衍射对其结构进行了表征。配合物1具有二重穿插的三维cds拓扑网络结构。配合物2为二维(4,4)层状结构,层与层之间通过互锁形成2D→3D的三维金属有机骨架。配合物3具有一维链状结构,一维链通过分子内和分子间氢键连接,形成三维超分子结构。荧光研究表明,配合物1~3可以在pH=4~10的水溶液中稳定存在,且在水中具有较强的发光性能,可作为检测2,4,6-三硝基苯酚和Fe3+的发光传感器,具有较高的灵敏度和选择性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号