首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4138篇
  免费   706篇
  国内免费   1510篇
化学   3566篇
晶体学   62篇
力学   467篇
综合类   49篇
数学   38篇
物理学   2172篇
  2024年   7篇
  2023年   47篇
  2022年   116篇
  2021年   159篇
  2020年   188篇
  2019年   180篇
  2018年   169篇
  2017年   204篇
  2016年   238篇
  2015年   220篇
  2014年   236篇
  2013年   452篇
  2012年   365篇
  2011年   438篇
  2010年   358篇
  2009年   343篇
  2008年   304篇
  2007年   352篇
  2006年   331篇
  2005年   281篇
  2004年   233篇
  2003年   210篇
  2002年   163篇
  2001年   138篇
  2000年   118篇
  1999年   107篇
  1998年   71篇
  1997年   59篇
  1996年   55篇
  1995年   54篇
  1994年   28篇
  1993年   29篇
  1992年   14篇
  1991年   22篇
  1990年   18篇
  1989年   12篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有6354条查询结果,搜索用时 17 毫秒
1.
锡二硫族化合物可以通过改变硫和硒的含量来连续调控三元合金材料的带隙、载流子浓度等物理化学性质,在电子和光电子器件应用上具有巨大的潜力。本文采用化学气相沉积(CVD)技术可控地制备了不同元素组分的SnSxSe2-x(x=0,0.2,0.5,0.8,1.0,1.2,1.5,1.8,2.0)单晶纳米片。采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、能量色散X射线光谱(EDS)、透射电子显微镜(TEM)以及拉曼光谱等手段对SnSxSe2-x纳米片进行了综合表征。结果表明本方法成功实现了元素百分比可调的SnSxSe2-x单晶纳米片的可控制备。重点研究了依赖于元素百分比的SnSxSe2-x的拉曼特征谱,实验结果与基于密度泛函理论(DFT)的第一性原理计算得到的SnSxSe2-x的拉曼仿真谱高度吻合,理论计算结果较好地诠释了实验拉曼光谱发生变化的原因。本研究提供了一种元素百分比可调的三元SnSxSe2-x单晶纳米片的可控制备方法,同时对锡二硫族化合物的明确、无损识别提供了方案。  相似文献   
2.
This study demonstrates how the method of thermally assisted oxidative precipitation in water can be opened for—the so far neglected—metal organic iron(II) complexes (herein: citrate) in order to obtain, in one step, ferromagnetic magnetite nanoparticles, possessing essential ligand properties. Based on a dedicated analysis of the specific precursor in combination with the consideration of known properties of the ligand, it is possible to identify existing inhibition-attributes of the iron organyl such that these can be overcome. Moreover, they can be exploited in a targeted manner; thus, simply by changing concentrations, a variety of magnetite nanoparticle morphologies with distinct properties can be obtained. In the case of the herein investigated ferrous citrate, three major inhibition effects are identified. While two of them efficiently prevent the formation of magnetite and need to be addressed to be overcome, the third can be exploited to selectively synthesize, for example, relatively stable carboxyl group-bearing nuclei clusters, exhibiting the properties of magnetically responsive photonic crystals, or relatively large mesocrystals, whose intraparticular magnetic interactions are apparently disturbed.  相似文献   
3.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   
4.
New approach for the reversal tolerant anode for polymer electrolyte membrane fuel cell is suggested by using the multifunctional IrRu alloy catalyst having concurrent superior activities towards hydrogen oxidation reaction and oxygen evolution reaction to mitigate the degradation of anode under the fuel starvation condition.  相似文献   
5.
This work aimed to tune the comprehensive properties of Fe-P-C-based amorphous system through investigating the role of microalloying process on the crystallization behavior,glass forming ability(GFA),soft magnetic features,and mechanical properties.Considering minor addition of elements into the system,it was found that the simultaneous microalloying of Ni and Co leads to the highest GFA,which was due to the optimization of compositional heterogeneity and creation of near-eutectic composition.Moreover,the FeCoNiCuPC amorphous alloy exhibited the best anelastic/viscoplastic behavior under the nanoindentation test,which was owing to the intensified structural fluctuations in the system.However,the improved plasticity by the extra Cu addition comes at the expense of magnetic properties,so that the saturation magnetization of this alloying system is significantly decreased compared to the FeCoPC amorphous alloy with the highest soft magnetic properties.In total,the results indicated that a combination of added elemental constitutes,i.e.,Fe69Co5Ni5Cu1P13C7 composition,provides an optimized state for the comprehensive properties in the alloying system.  相似文献   
6.
In the present work, novel 5-((1-benzyl-1,2,3-triazol-4-yl)methoxybenzylidene)-2-(arylamino)thiazol-4-one thiazolone incorporated triazole derivatives have been designed as tyrosinase inhibitors. The compounds were synthesized through click reaction in good yield. Moreover, the antityrosinas activity of the synthesized derivatives was evaluated. In the search for establishing a click copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction under strict conditions, in terms of a novel air-stable, a recyclable and efficient magnetic catalyst was planned for new triazole derivatives as a well-organized copper iodide supported on the functionalized Fe3O4@SiO2 core-shell (CuI/Fe3O4@SiO2(TMS-EDTA) nanoparticles). The engineered nanocatalyst synthesized for the first time and characterized by different methods, including FT-IR spectroscopy, XRD, FESEM, EDX, TEM, TGA, and BET analysis. The excellent catalytic performance in ethanol with high surface area (351.7 m2g−1) and short reaction time for diverse functional groups (120–200 min), no use of toxic solvents, reusability of the catalyst, and using eco-friendly conditions are the advantageous of this work. Moreover,the nanocatalyst can be used at least five times without any significant decrease in the yield of the reaction. The thiazolidine-triazole derivatives 9a , 9c , 9e , and 9 g showed promising tyrosinase inhibitory activity with IC50 values in the range of 5.90–9.81 μM. The compounds were found to be considerably more potent tyrosinase inhibitors than the reference inhibitor kojic acid (IC50 = 18.36 μM).  相似文献   
7.
ABSTRACT

The yield drop phenomenon observed in the Ti–15V-3Al–3Sn-3Cr (Ti–15–3) beta-titanium alloy and its anomalous behaviour in the boron and carbon added Ti–15–3 alloys have been studied. While the base and the carbon containing alloys exhibit yield drop, the boron containing alloy with smaller grain size than base alloy does not appear to show this phenomenon. Tensile tests were interrupted at different stress levels followed by analyses of slip lines and sub-structural characteristics using scanning and transmission electron microscopes to understand this anomalous yield point phenomenon. Infrared thermal imaging technique was used to map the strain localisation and the spatiotemporal evolution of deformation along the gauge length of the specimens during the tensile tests. Deformation in these alloys initiates only in a few grains. Pile-up of dislocations in these grains subsequently triggers the formation of dislocations in other grains and their rapid multiplications. The spreading of deformation by the generation of dislocations from pile up dislocations in one grain to neighbouring un-deformed grains and their rapid multiplication to new regions influence the yield drop phenomenon and its characteristics. It is shown in this study that microscopic instability in the grain level is a necessary, but not the sufficient condition for the manifestation of macroscopic instability during tensile deformation in polycrystalline materials. The presence of boride particles at grain boundaries restricts the slip transfer across the grains as well as the spreading of deformation to new regions, which causes the suppression of yield drop in the boron containing alloy.  相似文献   
8.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
采用磁控溅射技术在聚甲基丙烯酸甲酯(PMMA)树脂基托表面沉积一层纳米银(Ag NPs)涂层.研究了纳米银改性PMMA树脂基托的机械性能,为改性材料的临床应用提供理论基础.根据国际标准ISO2409:2007描述的划格法对涂层与基底的附着力强度进行测试,各组试件的接触角采用静态液滴法测量,三点弯曲法检测试件的弯曲强度.结果显示,各组涂层与PMMA基底材料结合良好,各组试件的表面润湿性变化不大,其中PMMA-Ag NPs80s组疏水性略有提高,各组试件的弯曲强度均符合国家标准.  相似文献   
10.
Ag nanoparticle (NP)‐decorated MIL‐125(Ti) microspheres (Ag@MIL‐125(Ti)) were firstly fabricated via a facile hydrothermal and following photo‐reduction method. The photocatalysts were characterized using X‐ray diffraction, scanning and transmission electron microscopies, X‐ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The characterization results indicated that Ag NPs were dispersed on the surface of MIL‐125(Ti) microspheres, and the Ag NPs had a uniform diameter of about 40 nm. The composites exhibited excellent visible‐light absorption, due to the modification with the Ag NPs. The photocatalytic activity for the visible‐light‐promoted degradation of Rhodamine B was improved through the optimization of the amount of Ag loaded as a co‐catalyst, this amount being determined as 3 wt%. Additionally, studies performed using radical scavengers indicated that O2? and e? served as the main reactive species. The catalyst can be reused at least five times without significant loss of its catalytic activity. Furthermore, a photocatalytic mechanism for degradation of organics over Ag@MIL‐125(Ti) is also proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号