首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3439篇
  免费   526篇
  国内免费   1012篇
化学   4075篇
晶体学   40篇
力学   52篇
综合类   12篇
数学   8篇
物理学   790篇
  2024年   1篇
  2023年   55篇
  2022年   58篇
  2021年   131篇
  2020年   193篇
  2019年   146篇
  2018年   130篇
  2017年   135篇
  2016年   217篇
  2015年   225篇
  2014年   246篇
  2013年   374篇
  2012年   305篇
  2011年   324篇
  2010年   273篇
  2009年   269篇
  2008年   279篇
  2007年   284篇
  2006年   266篇
  2005年   235篇
  2004年   192篇
  2003年   164篇
  2002年   90篇
  2001年   65篇
  2000年   44篇
  1999年   49篇
  1998年   28篇
  1997年   40篇
  1996年   26篇
  1995年   29篇
  1994年   22篇
  1993年   19篇
  1992年   15篇
  1991年   5篇
  1990年   17篇
  1989年   8篇
  1988年   7篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有4977条查询结果,搜索用时 15 毫秒
1.
This study demonstrates how the method of thermally assisted oxidative precipitation in water can be opened for—the so far neglected—metal organic iron(II) complexes (herein: citrate) in order to obtain, in one step, ferromagnetic magnetite nanoparticles, possessing essential ligand properties. Based on a dedicated analysis of the specific precursor in combination with the consideration of known properties of the ligand, it is possible to identify existing inhibition-attributes of the iron organyl such that these can be overcome. Moreover, they can be exploited in a targeted manner; thus, simply by changing concentrations, a variety of magnetite nanoparticle morphologies with distinct properties can be obtained. In the case of the herein investigated ferrous citrate, three major inhibition effects are identified. While two of them efficiently prevent the formation of magnetite and need to be addressed to be overcome, the third can be exploited to selectively synthesize, for example, relatively stable carboxyl group-bearing nuclei clusters, exhibiting the properties of magnetically responsive photonic crystals, or relatively large mesocrystals, whose intraparticular magnetic interactions are apparently disturbed.  相似文献   
2.
Cover Image     
The novel heteronuclear complexes [{cis-PtCl (NH3)(μ-pyrazine)ZnCl (terpy)}](ClO4)2 (Pt-L1-Zn) and [{cis-PtCl (NH3)(μ-4,4′-bipyridyl)ZnCl (terpy)}](ClO4)2 (Pt-L2-Zn) (where terpy = 2,2′:6′,2′′-terpyridine, L1 = pyrazine, L2 = 4,4′-bipyridyl) were synthesized and characterized. The pKa values were determined, and based on them it was established that the π-acceptor ability of the pyrazine bridging ligand is more affective on lower pKa values. The kinetic measurements of the substitution reactions with biologically relevant ligands, such as guanosine-5′-monophosphate (5′-GMP), inosine-5′-monophosphate (5′-IMP) and glutathione (GSH), were studied at pH 7.4. The reactions were followed under pseudo-first-order conditions by UV–Vis spectrophotometry. The order of reactivity of the investigated biomolecules for the first reaction is 5′-GMP > 5′-IMP > GSH, while for the second is 5′-IMP > GSH. Pt-L1-Zn complex is more reactive than Pt-L2-Zn. The cytotoxic activity of heteronuclear Pt-L1-Zn and Pt-L2-Zn complexes was determined on human colorectal cancer cell line (HCT-116) and human breast cancer cell line (MDA-MB-231). Both complexes significantly reduced cell viability on tested cell lines and exerted significant cytotoxic effects, with better effect on HCT-116 cells than cisplatin, especially after 72 hr (IC50 < 0.52 μM). The Pt-L2-Zn complex showed higher activity against human breast cancer cells (MDA-MB-231) than cisplatin after 72 hr. The higher reactivity toward DNA constituent and significant cytotoxic activity may be attributed to the different geometry, Lewis acidity of different metal centers, as well as, to choice of bridging ligands.  相似文献   
3.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   
4.
We report a simple approach to the production of carbon fiber‐based amperometric microbiosensors for selective detection of hydrogen peroxide (H2O2), which was achieved by electrometallization of carbon fiber microelectrodes (CFMs) by electrodeposition of Pt nanoparticles. The Pt‐carbon hybrid sensing interface provided a sensitivity of 7711±587 μA ? mM?1 ? cm?2, a detection limit of 0.53±0.16 μM (S/N=3), a linear range of 0.8 μM–8.6 mM, and a response time of <2 sec. The morphologies of the Pt nanoparticle‐modified CFMs were characterized by scanning electron microscopy. To achieve selectivity, permseletive layers, polyphenylenediamine (PPD) and Nafion, were deposited resulting in exclusion of the anionic and cationic interferents, ascorbic acid and dopamine, respectively, at their physiologically relevant concentrations. The resultant sensors displayed a sensitivity to hydrogen peroxide of 1381±72 μA ? mM?1 ? cm?2, and a detection limit of 0.86±0.19 μM (S/N=3). This simple and rapid metallization method converts carbon fiber microelectrodes, which are readily accessible, to microscale Pt electrodes in 2 min, providing a platform for oxidase‐based amperometric biosensors with improved spatial resolution over more commonly used platinum electrode array microprobes.  相似文献   
5.
构建了用于催化烯烃与过氧化氢环氧化反应的高效、 绿色催化反应体系. 首先, 通过水热合成法制备了纳米SnO2, 并在320 ℃下煅烧. 随后, 对所有催化剂进行X射线衍射(XRD)、 紫外-可见漫反射光谱(UV-Vis)、 傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征. 进一步将催化剂用于以H2O2水溶液为氧化剂环氧化各种官能化烯烃(包括环烯烃, 苯乙烯和直链烯烃)的反应, 以高转化率和高选择性得到了环氧化物. 在相似的反应条件下, 发现合成的纳米SnO2-170催化剂在催化1-甲基环己烯与H2O2的环氧化反应中的活性最佳, 在2 h内1-甲基环己烯的转化率达到100%, 环氧化物选择性达到100%.  相似文献   
6.
《中国化学快报》2019,30(12):1996-2002
This short review is dedicated to celebrate Prof.Shoukuan Fu's 80 th birthday by discussing several of my accomplished projects over the past twenty years,which all applied radical polymerization in aqueous dispersed media for producing polymers with branched structures.These projects include the use of microemulsion polymerization for syntheses of fluorescent nanoparticles,hairy nanoparticles and hyperbranched polymers;the use of miniemulsion polymerization for synthesis of star polymers and light-emitting nanoparticles;the use of seeded emulsion polymerization for synthesis of hairy nanoparticles and hyperstar polymers;and the use of precipitation polymerization for synthesis of hollow polymer nanocapsules.Discussion of these projects demonstrates intriguing features of polymerization in biphasic dispersed media via either conventional radical polymerization or controlled radical polymerization to effectively regulate the branched structure of functional polymers.  相似文献   
7.
The practical application of Shilov-type Pt catalysis to the selective hydroxylation of terminal aliphatic C−H bonds remains a formidable challenge, due to difficulties in replacing PtIV with a more economically viable oxidant, particularly O2. We report the potential of employing FeCl2 as a suitable redox mediator to overcome the kinetic hurdles related to the direct use of O2 in the Pt reoxidation. For the selective conversion of butyric acid to γ-hydroxybutyric acid (GHB), a significantly enhanced catalyst activity and stability (turnover numbers (TON)>30) were achieved under 20 bar O2 in comparison to current state-of-the-art systems (TON<10). In this regard, essential reaction parameters affecting the overall activity were identified, along with specific additives to attain catalyst stability at longer reaction times. Notably, deactivation by reduction to Pt0 was prevented by the addition of monodentate pyridine derivatives, such as 2-fluoropyridine, but also by introducing varying partial pressures of N2 in the gaseous atmosphere. Finally, stability tests revealed the involvement of PtII and FeCl2 in catalyzing the non-selective overoxidation of GHB. Accordingly, in situ esterification with boric acid proved to be a suitable strategy to maintain enhanced selectivities at much higher conversions (TON>60). Altogether, a useful catalytic system for the selective hydroxylation of primary aliphatic C−H bonds with O2 is presented.  相似文献   
8.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   
9.
采用热分解法, 以柠檬酸钠和尿素为前驱体, 通过控制反应温度制备了不需要结合任何固体分散基质即可呈现明亮固态发光的碳纳米粒子(CNPs). 利用X射线衍射(XRD), 透射电子显微镜(TEM), X射线光电子能谱(XPS)、 紫外-可见吸收光谱(UV-Vis)和光致发光光谱(PL)等对CNPs的物相、 形貌和粒径、 表面基团及光学特性进行了表征. 结果表明, 该CNPs为无定形碳结构, 准球形形貌, 粒径分布在5~15 nm范围, 其表面存在C=O, C=N和O=C—N等基团. CNPs的水溶液和固体粉末在365 nm紫外光辐射下, 均呈现明亮的蓝绿色发光. 将该CNPs粉末用作荧光试剂可直接显现不同非渗透性客体表面的潜指纹(LFPs). 在365 nm紫外光激发下, CNPs粉末刷显后的LFPs细节特征清晰可辨, 强荧光背景客体表面的LFPs获得了高对比度的显现效果. 同时, 老化30 d的LFPs利用CNPs粉末也能够显现出可识别的指纹细节. CNPs发光粉末作为指纹试剂在刑侦领域具有潜在的应用前景.  相似文献   
10.
In the present work, novel 5-((1-benzyl-1,2,3-triazol-4-yl)methoxybenzylidene)-2-(arylamino)thiazol-4-one thiazolone incorporated triazole derivatives have been designed as tyrosinase inhibitors. The compounds were synthesized through click reaction in good yield. Moreover, the antityrosinas activity of the synthesized derivatives was evaluated. In the search for establishing a click copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction under strict conditions, in terms of a novel air-stable, a recyclable and efficient magnetic catalyst was planned for new triazole derivatives as a well-organized copper iodide supported on the functionalized Fe3O4@SiO2 core-shell (CuI/Fe3O4@SiO2(TMS-EDTA) nanoparticles). The engineered nanocatalyst synthesized for the first time and characterized by different methods, including FT-IR spectroscopy, XRD, FESEM, EDX, TEM, TGA, and BET analysis. The excellent catalytic performance in ethanol with high surface area (351.7 m2g−1) and short reaction time for diverse functional groups (120–200 min), no use of toxic solvents, reusability of the catalyst, and using eco-friendly conditions are the advantageous of this work. Moreover,the nanocatalyst can be used at least five times without any significant decrease in the yield of the reaction. The thiazolidine-triazole derivatives 9a , 9c , 9e , and 9 g showed promising tyrosinase inhibitory activity with IC50 values in the range of 5.90–9.81 μM. The compounds were found to be considerably more potent tyrosinase inhibitors than the reference inhibitor kojic acid (IC50 = 18.36 μM).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号