首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   12篇
  国内免费   36篇
化学   141篇
晶体学   1篇
物理学   22篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   14篇
  2019年   11篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   19篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   16篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
排序方式: 共有164条查询结果,搜索用时 203 毫秒
1.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
2.
Luminescent seven-coordinated zirconium and hafnium complexes bearing three mono-anionic 2,2′-pyridylpyrrolide ligands and one chloride were synthesized. Solid-state structures and the dynamic behaviors in solution were probed by X-ray crystallography and variable temperature 1H NMR experiments, respectively. Absorption spectroscopy and time-dependent density functional theory (TD-DFT) calculations supported a hybrid of ligand-to-metal charge transfer (LMCT)/ligand-to-ligand charge transfer (LLCT) for the visible light absorption band. The complexes (MePMPMe)3MCl (M=Zr, Hf, MePMPMe=3,5-dimethyl-2-(2-pyridyl)pyrrolide) are emissive in solution at room temperature upon irradiation with visible light due to a combination of phosphorescence and fluorescence characterized by excited state lifetimes in the μs and low to sub-ns timescale, respectively. Electrochemical experiments revealed that the zirconium complex possesses a reversible redox event under highly reducing condition (−2.29 V vs. Fc+/0).  相似文献   
3.
Three isostructural lanthanide metal-organic frameworks (Ln-MOFs) were synthesized with uncoordinated N^N site, and the Ru(N^N)3 photosensitizer was introduced via coordination link. These functionalized frameworks showed excellent performance in the photocatalytic oxidation of sulfides with good conversion and high sulfoxide selectivity.  相似文献   
4.
本文主要研究了传统卤化银照相材料中的增感技术,如硫增感、金增感、硫加金协同增感,对新型的以苯并三氮唑银为银源、水性聚乙烯醇为粘合剂的光敏热成像材料增感是否有效的问题。结果显示,传统化学增感对异位法制备的溴化银为光敏剂的光敏热成像材料具有很好的增感效果,硫加金协同增感的效果要好于单独的硫增感和金增感;传统化学增感对原位法制备的溴化银为光敏剂的光敏热成像材料没有增感效果,反而减感,硫加金减感效果最严重。  相似文献   
5.
A broadband visible light-absorbing [70]fullerene-BODIPY-triphenylamine triad (C70-B-T) has been synthesized and applied as a heavy atom-free organic triplet photosensitizer for photooxidation. By attaching two triphenylmethyl amine units (TPAs) to the π-core of BODIPY via ethynyl linkers, the absorption range of the antenna is extended to 700 nm with a peak at 600 nm. Thus, the absorption spectrum of C70-B-T almost covers the entire UV–visible region (270–700 nm). The photophysical processes are investigated by means of steady-state and transient spectroscopies. Upon photoexcitation at 339 nm, an efficient energy transfer (ET) from TPA to BODIPY occurs both in C70-B-T and B-T, resulting in the appearance of the BODIPY emission at 664 nm. Direct or indirect (via ET) excitation of the BODIPY-part of C70-B-T is followed by photoinduced ET from the antenna to C70, thus the singlet excited state of C70 (1C70*) is populated. Subsequently, the triplet excited state of C70 (3C70*) is produced via the intrinsic intersystem crossing of C70. The photooxidation ability of C70-B-T was studied using 1,5-dihydroxy naphthalene (DHN) as a chemical sensor. The photooxidation efficiency of C70-B-T is higher than that of the individual components of C70-1 and B-T, and even higher than that of methylene blue (MB). The photooxidation rate constant of C70-B-T is 1.47 and 1.51 times as that of C70-1 and MB, respectively. The results indicate that the C70-antenna systems can be used as another structure motif for a heavy atom-free organic triplet photosensitizer.  相似文献   
6.
A design of novel hydrophilic tetracationic dumbbell-shaped [60]fullerene nanostructures was made by balancing the hydrophilicity and hydrophobicity characteristics of the fullerene adduct for their potential application as photodynamic sensitizers in the PDT treatment. A sequential protection-deprotection reaction pathway was applied for the functional differentiation between primary and secondary amine moieties of pentaethylene hexamine. Synthesis of the target molecule involves two key steps of unsymmetrical esterification and amidation of malonic acid and subsequent fullerenation. The synthetic strategy was accomplished using mild reaction conditions in the intermediate molecule preparation and led a moderate overall product yield.  相似文献   
7.
Monodispersed diphenylalanine‐based nanospheres with excellent biocompatibility are fabricated through a facile covalent reaction‐induced assembly. Interestingly, the nanospheres exhibit red autofluorescence. Most importantly, such assembled dipeptide nanospheres can serve as intrinsic photosensitizer to convert O2 to singlet oxygen (1O2). Thus, photodynamic therapy in vitro can be achieved effectively. The versatile strategy could be extended to other biomolecules containing a primary amine group for the fabrication of potential intrinsic photosensitizers.  相似文献   
8.
Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of 1O2 at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.  相似文献   
9.
自2001年以来,双光子敏化产生单重态氧的三重态光敏剂的研究取得了一定的进展。双光子三重态光敏剂对肿瘤组织的近红外激光和红外激光的光动力治疗作用具有广阔的应用前景。本文重点分析了近些年已报道的双光子三重态光敏剂种类,如疏水性、水溶性等不同的敏化剂;介绍了可以根据分子的激发态性质、利用化学手段对双光子三重态敏化剂的性质以及光敏产生单重态氧的量子产率进行调控;概括了双光子三重态敏化剂的相对和绝对双光子横截面的测量方法;总结了双光子三重态敏化剂发展中面临的一些关键问题,并展望了双光子三重态敏化剂的发展方向。  相似文献   
10.
Phosphonic acids are known to be useful monomers in dental restorative materials because of their good potential to provide enhanced adhesion to hydroxyapatite and their high hydrolytic stability. In this study, the photopolymerization of phosphonic acid‐based monomer via the camphorquinone (CQ)/ethyl‐4‐(dimethylaminobenzoate) (EDAB) photoredox system is compared with a ternary system composed of iodonium hexafluorophosphate and CQ/EDAB. Photocalorimetry shows that the ternary system does not provide a significant acceleration of the polymerization with either acrylamide or methacrylate phosphonic acids. The complexation of the iodonium by the phosphonic moiety of the acidic monomers leads to a lowered iodonium reactivity and reduced polarizability of the medium and as a consequence limits the rate enhancement effect normally observed by phosphonic acids on the polymerization rate. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5046–5055  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号