首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5132篇
  免费   1236篇
  国内免费   180篇
化学   2603篇
晶体学   378篇
力学   88篇
综合类   16篇
数学   68篇
物理学   3395篇
  2024年   4篇
  2023年   40篇
  2022年   65篇
  2021年   79篇
  2020年   173篇
  2019年   128篇
  2018年   170篇
  2017年   207篇
  2016年   332篇
  2015年   204篇
  2014年   281篇
  2013年   881篇
  2012年   314篇
  2011年   348篇
  2010年   273篇
  2009年   356篇
  2008年   340篇
  2007年   373篇
  2006年   349篇
  2005年   262篇
  2004年   222篇
  2003年   190篇
  2002年   149篇
  2001年   105篇
  2000年   79篇
  1999年   87篇
  1998年   78篇
  1997年   49篇
  1996年   56篇
  1995年   41篇
  1994年   37篇
  1993年   31篇
  1992年   28篇
  1991年   18篇
  1990年   31篇
  1989年   13篇
  1988年   25篇
  1987年   13篇
  1986年   16篇
  1985年   12篇
  1984年   20篇
  1983年   7篇
  1982年   13篇
  1981年   5篇
  1980年   8篇
  1979年   10篇
  1977年   4篇
  1975年   6篇
  1974年   3篇
  1973年   7篇
排序方式: 共有6548条查询结果,搜索用时 15 毫秒
1.
This study demonstrates how the method of thermally assisted oxidative precipitation in water can be opened for—the so far neglected—metal organic iron(II) complexes (herein: citrate) in order to obtain, in one step, ferromagnetic magnetite nanoparticles, possessing essential ligand properties. Based on a dedicated analysis of the specific precursor in combination with the consideration of known properties of the ligand, it is possible to identify existing inhibition-attributes of the iron organyl such that these can be overcome. Moreover, they can be exploited in a targeted manner; thus, simply by changing concentrations, a variety of magnetite nanoparticle morphologies with distinct properties can be obtained. In the case of the herein investigated ferrous citrate, three major inhibition effects are identified. While two of them efficiently prevent the formation of magnetite and need to be addressed to be overcome, the third can be exploited to selectively synthesize, for example, relatively stable carboxyl group-bearing nuclei clusters, exhibiting the properties of magnetically responsive photonic crystals, or relatively large mesocrystals, whose intraparticular magnetic interactions are apparently disturbed.  相似文献   
2.
Metal-acteylacetonates are important sublimable metal-organic precursors for metal-oxide thin film formation over solid preforms by MOCVD (Metal Organic Chemical Vapour Deposition) technique. Mixed-metal-acetylacetonates (MMAA) are suitable starting materials for mixed metal nano-oxidic thin film formation through such facile routes. Layered Double Hydroxides (LDH) of suitable metal ion combination can perform as appropriate starting base for neutralisation by enol form of 2,4-pentanedione or acteylacetonate tautomer ligands to obtain such MMAA. In this paper synthesis of composite crystals of Cu(II)/Cr(III) acetylacetonates (CCAA) is reported by the reaction of Cu–Cr-LDH with acetylacetone. The products were characterized by various different techniques. The surface area and pore volume analysis of the crystals showed the formation of nanopores in the compound. TEM analysis confirmed that the inner core of the nanoporous crystals of Cu(acac)2 was covered by coating of poorly crystallised Cr(acac)3 and they together form the composite crystals, and they together form the composite crystals. Due to eutectic mixture formation the melting point of CCAA lies in between the melting points of individual components Cu(acac)2 and Cr(acac)3 and shows sublimability, a property important for the formation of MOCVD films. The composite was used for CuCr2O4 spinel mixed oxide films formation over solid ceramic honeycomb monolithic substrates. Application prospects of the route in the field of catalysis is high as it can directly combine the benefits of mixed metal oxide catalysis and structured supports without the involvement of a third component. In this work the performance of such a catalytic device has been tested for low temperature decomposition of high Global Warming Potential (GWP) gas N2O to N2 and O2.  相似文献   
3.
Substituted acene derivatives are regarded as promising materials for organic electronic devices such as organic light-emitting diodes (OLEDs). In particular, anthracene derivatives are known to exhibit good fluorescence property, with the air stability and solubility in common organic solvents expected to give advantages for solution-processed device fabrication. In this study, a series of bistriisopropylsilyl(TIPS)ethynyl anthracene derivatives with azaacene-containing iptycene wings have been synthesized by using condensation reactions. Effects of size of azaacenes on optical properties and packing structures were investigated. UV/Vis absorption and fluorescence spectra indicate that the π-elongation of iptycene units has small effects on the overall π-system, which is also supported by electrochemical measurements. Secondly, single-crystal X-ray analysis implies that the molecules likely have interactions with the iptycene units of adjacent molecules, while the iptycene wings and TIPSethynyl groups can prevent the central anthracene unit from undesirable non-radiative energy loss. Finally, the most emissive derivative was used as a dopant for solution-processed OLEDs, showing obvious electroluminescence with a luminance of over 920 cd m−2.  相似文献   
4.
Xu Cheng 《中国物理 B》2021,30(11):118103-118103
Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry, medical treatment, ocean dynamics to aerospace. Recently, graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability. However, these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics, due to the unsuitable Fermi level of graphene and the destruction of fiber structure, respectively. Here, we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber (Gr-PCF) with the non-destructive integration of graphene into the holes of PCF. This hybrid structure promises the intact fiber structure and transmission mode, which efficiently enhances the temperature detection ability of graphene. From our simulation, we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to ~ 3.34×10-3 dB/(cm·℃) when the graphene Fermi level is ~ 35 meV higher than half the incident photon energy. Additionally, this sensitivity can be further improved by ~ 10 times through optimizing the PCF structure (such as the fiber hole diameter) to enhance the light-matter interaction. Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.  相似文献   
5.
A series of new tetrakis(dialkoxyphenyl) dicyanotetraoxapentacene derivatives ( 1 a – c ) were prepared by reaction of the appropriate terphenyl diols with tetrafluoroterephthalonitrile in good yields. Compounds 1 b and 1 c , which bear hexyloxy and decyloxy side chains, exhibited columnar hexagonal mesophases, as shown by polarized optical microscopy, variable-temperature powder X-ray diffraction, and differential scanning calorimetry. Single-crystal X-ray diffraction of methoxy-substituted 1 a revealed that the dicyanotetraoxapentacene core is highly planar, consistent with the notion that these molecules are able to stack in columnar mesophases. A detailed photophysical characterization showed that these compounds exhibit aggregation-induced emission in solution, emission in nonpolar solvents, weak emission in polar solvents, and strong emission in the solid state both as powder and in thin films. These observations are consistent with a weakly emissive charge-transfer state in polar solvents and a more highly emissive locally excited state in nonpolar solvents.  相似文献   
6.
Flexible control of building blocks of photonic crystals enables achieving desirable band structures. Exploration of photonic band extrema has brought many fantastic features to design artificial optical materials, such as Brillouin‐zone‐corner extrema for valley photonic materials and zone‐center extremum for zero‐index metamaterials. However, two such kinds of extrema are always found independently in different photonic crystals. In this work, a kind of valley photonic crystals possessing both zone‐center and zone‐corner band extrema almost at the same frequency is proposed. Inspired by antennas theory, a three‐antenna array (TAA) source is devoted to individually manipulate each extremum. The correlation coefficient is given to determine the coupling efficiency between the TAA source and extrema eigenmodes. By using a source with a high correlation coefficient, these extrema bulk states are selectively excited consistent with their eigenfields. Furthermore, three control cases are shown that multiple extrema points are simultaneously excited, in order to confirm the validity of the correlation coefficient. Finally, a potential application of a beam‐steering device is proposed through selective excitation of ternary extrema. This work develops binary valley states into ternary mix states, rendering more degrees of freedom for on‐chip optical information transport, particularly for beam steering and mode division multiplexing.  相似文献   
7.
Cyclohexane and cyclotri-β-alanyl have been used as scaffolds for the design of new C3-symmetric rings incorporating conjugated alkenes and dienes. All three C3-symmetric lactams share the same triangular shape and their crystal system is trigonal. They all belong to the R3 space group, R3m, R3 and R3c, for the increasingly large 12-, 18- and 24-membered rigid rings, respectively. All lactams stack on top of each other, through H-bonds and van der Waals noncovalent interactions, leading to endless supramolecular cylinders and tubes. The largest member of the family leads to tubes, the central pores of which is wide enough to let water in. A common feature of all the lactams is their very large dipole, of around 9 D, according to DFT calculations. Surprisingly, all the resulting cylinders and tubes pack side by side in the crystals, with all the dipoles pointing to the same direction. As a result, all three crystals are anisotropic and appear to be the first members of a new kind of highly polar crystals.  相似文献   
8.
9.
利用基于密度泛函理论的第一性原理,研究了Cu:Fe:Mg:LiNbO3晶体及对比组的电子结构和光学特性.研究显示,单掺铜或铁铌酸锂晶体的杂质能级分别由Cu 3d轨道或Fe 3d轨道贡献,禁带宽度分别为3.45和3.42 eV;铜、铁共掺铌酸锂晶体杂质能级由Cu和Fe的3d轨道共同贡献,禁带宽度为3.24 eV,吸收峰分别在3.01,2.53和1.36 eV处;Cu:Fe:Mg:LiNbO3晶体中Mg^2+浓度低于阈值或高于阈值(阈值约为6.0 mol%)的禁带宽度分别为2.89 eV或3.30 eV,吸收峰分别位于2.45 eV,1.89 eV或2.89 eV,2.59 eV,2.24 eV.Mg^2+浓度高于阈值,会使吸收边较低于阈值情况红移;并使得部分Fe^3+占Nb位,引起晶体场改变,从而改变吸收峰位置和强度.双光存储应用中可选取2.9 eV作为擦除光,2.5 eV作为读取和写入光,选取Mg^2+浓度达到阈值的三掺晶体在增加动态范围和灵敏度等参量以及优化再现图像的质量等方面更具优势.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号