首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2957篇
  免费   94篇
  国内免费   606篇
化学   3319篇
晶体学   10篇
力学   49篇
综合类   42篇
数学   21篇
物理学   216篇
  2023年   15篇
  2022年   30篇
  2021年   122篇
  2020年   108篇
  2019年   114篇
  2018年   77篇
  2017年   96篇
  2016年   118篇
  2015年   86篇
  2014年   94篇
  2013年   197篇
  2012年   160篇
  2011年   159篇
  2010年   117篇
  2009年   144篇
  2008年   133篇
  2007年   184篇
  2006年   173篇
  2005年   161篇
  2004年   168篇
  2003年   161篇
  2002年   142篇
  2001年   113篇
  2000年   99篇
  1999年   87篇
  1998年   82篇
  1997年   74篇
  1996年   75篇
  1995年   69篇
  1994年   53篇
  1993年   42篇
  1992年   38篇
  1991年   39篇
  1990年   34篇
  1989年   31篇
  1988年   22篇
  1987年   6篇
  1986年   7篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
排序方式: 共有3657条查询结果,搜索用时 15 毫秒
1.
Three new types of heterogeneous catalysts were prepared using a facile approach by the immobilization of Grubbs catalysts on PEGylated Merrifield resin. One of the immobilized catalysts was more efficient than the free catalyst for the metathesis of leaf alcohols in conversion and selectivity and was reused repeatedly (up to 5 cycles) with only a slight loss of activity (10.5 %). The long-chain PEGylated linker provided an appropriate distance between the resin and the catalytic center so that the ruthenium catalysts acted as the free catalyst.  相似文献   
2.
The molecular mechanism of the adhesion between silica surface and epoxy resin under atmospheric conditions is investigated by periodic density-functional-theory (DFT) calculations. Slab models of the adhesion interface were built by integrating a fragment of epoxy resin and hydroxylated (0 0 1) surface of α-cristobalite in the presence of adsorbed water molecules. Effects of adsorbed water on the adhesion interaction are evaluated on the basis of geometry-optimized structures, adhesion energies, and forces. Calculated results demonstrate that adsorbed water molecules significantly reduce both the adhesion energies and forces of the silica surface–epoxy resin interface. The reduction of adhesion properties can be associated with structural deformation of water molecules confined in the tight space between the adhesive and adherend as well as structural flexibility of the hydrogen-bonding network in the interfacial region during detachment of the epoxy resin from the hydrophilic silica surface. © 2018 Wiley Periodicals, Inc.  相似文献   
3.
We are reporting in the present study that molecules extracted from olive pomace prevent cell death induced by Ca2+-overloading in different cell types. Exposure of cells to these molecules counteracts the Ca2+-induced cell damages by reducing the activation of the Ca2+-dependent protease calpain, acting possibly through the modification of the permeability to Ca2+ of the plasma membrane. The purification step by RP-HPLC suggests that effective compound(s), differing from the main biophenols known to be present in the olive pomace extract, could be responsible for this effect. Our observations suggest that bioactive molecules present in the olive pomace could be potential candidates for therapeutic applications in pathologies characterised by alterations of intracellular Ca2+ homeostasis.  相似文献   
4.
Ginkgo biloba L. leaf (GBL) is one of the most commonly used medicinal plants in the world. Phenolic acids with biological activities have a relatively high content in G. biloba leaf extracts (GBE); therefore they are of great significance for the quality control of GBL, GBE and its preparations. However, there have been few studies focused on their analysis. In this work, 12 phenolic acids, including 11 phenolic acid glycosides, were identified by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC–Q-TOF/MS). Then, a method combining enzymolysis with HPLC was established for quantification of phenolic acid glycosides. It was found that the aglycones of phenolic acid glycosides mainly comprised five phenolic acids: 2,4,6-trihydroxybenzoic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid and p-coumaric acid. The quantitative method was validated, and the correlation coefficient (0.9993–0.9999), recovery (≥88.4%), repeatability (≤0.8%), and inter-day precision (≤5.5%) were satisfactory. Finally, the contents of glycosides of five phenolic acids in GBL, GBE and GBE injection from different sources were determined by the developed method. The method was accurate, repeatable and practicable, which could be helpful for the quantification of phenolic acid glycosides in other products containing GBL or GBE.  相似文献   
5.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
6.
为了研究酚醛层压材料的冲击力学行为并获得本构模型,利用万能试验机和整形修正的分离式霍普金森压杆(SHPB)装置,对材料试样进行了应变率范围为10-3~103 s-1的单轴压缩实验,得到了不同加载应变率下的应力应变曲线,对其在准静态、动态载荷下的压缩破坏机理进行了初步探讨。结果表明,酚醛层压材料具有较强的应变率效应,与准静态(1.67×10-3 s-1)时相比,在动态载荷(7×102 s-1)下,峰值应力增加了约10倍;破坏应变减少了约一半;在准静态和动态加载条件下试样力学性能的差异是由于纤维基体界面特性以及不同应变率下破坏模式的不同;采用朱-王-唐本构方程描述了酚醛层压材料力学行为,拟合得到了本构方程的系数,在加载过程中,理论计算值与实验结果吻合较好。  相似文献   
7.
Phenol-formaldehyde resin (PF) composites with a nano-porous graphite additive (NPGA) in various contents were fabricated and the wear behaviors under low and high sliding speeds were studied. The addition of NPGA significantly improved the wear resistance of the PF. The specific wear rates of PF composites under low sliding speed first decreased with increasing NPGA and then slightly increased when the NPGA content surpassed 15?wt%; the specific wear rate of the composite with 15?wt% NPGA was reduced by 77% compared with the neat PF. Under high sliding speed the specific wear rates of the composite material decreased continuously with increasing NPGA content and the maximum wear resistance of the composite with 20?wt% NPGA was more than 12 times that of the neat phenolic resin. The results are attributed to the combined effects of load-capacity and the lubrication role of the included NPGA. The surface morphology of the worn surface was characterized, and the wear mechanism for the composites is discussed.  相似文献   
8.
A series of phenolic epoxy resin (PEP) modified polyurethane foams (PUF) were prepared via an in-situ polymerization, one step process. It was found that the epoxy modified PUF foam exhibited a perforated network structure with larger cell size, higher open cell porosity and enhanced ovality compared with pure PUF. With increasing content of PEP, the tensile strength, elongation at break and low temperature modulus of PUF decreased. A single Tg was observed for PEP modified PUF, indicating that the two component phases of the polyurethane-epoxy were miscible. With increasing PEP content, the Tg of PUF shifted slightly to higher temperature, tan δmax dropped to lower values, and the retention value of the storage modulus at ?20 and ?10?°C increased. For pure PUF, the cell walls degraded and the structure became disordered after aging under heat and stress, while for PUF/20wt%PEP, the degradation degree was obviously reduced, and an orientation of the cells along the stress direction and a density increase was observed. During aging at 200?°C, the retention of the mechanical properties of PUF/20wt% PEP was much higher than that of pure PUF, and it showed superior stability under heat and stress, attributed to incorporation of the thermally resistant oxazolidone rings and benzene rings in the PU backbones, the highly cross-linked networks of the polyurethane-epoxy systems and the obvious orientation of the cells under stress.  相似文献   
9.
The present study was designed to evaluate the contents of different antioxidants compounds and their antioxidant activities in Jalopeno peppers (Capsicum annuum) cultivars (El Dorido, Grande, Tula, Sayula and El Rey) extracts. Free radical scavenging activity of Grande was recorded as high as 87% followed by El Dorido (83%). Results of reducing power (Fe3+ to Fe2+) showed that Grande (0.85%) and El Dorido (0.81%) fruit extract absorbance value were close to synthetic antioxidant BHT (0. 97%) obtained at100 μg/mL. The results showed that total phenolic content of El Dorido and Grande were significantly higher compared to other Jalapeno pepper. Results indicated strong and positive correlation between antioxidant activity and carotenoids content (r = 0.75), vitamin C (r = 0.78) and total capsaicinoids (r = 0.84), respectively. The results of the antioxidant activity assays showed that the El Dorido and Grande had strongest antioxidant activity compared to other peppers cultivars in this study.  相似文献   
10.
Two epoxy resins containing degradable acetal linkages were synthesized by the reaction of cresol novolak‐type phenolic resin (CN) with vinyl ethers containing a glycidyl group [cyclohexane dimethanol vinyl glycidyl ether (CHDMVG) and 4‐vinyloxybutyl glycidyl ether (VBGE). Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating laminated prepreg sheets with CN‐CHDMVG resin (derived from CN and CHDMVG) and CN‐VBGE resin (derived from CN and VBGE), in which carbon fibers are impregnated with epoxy resins containing curing agents [dicyandiamide (DICY)] and curing accelerator [3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU)]. CN‐CHDMVG‐based CFRPs and CN‐VBGE‐based CFRPs exhibited almost the same tensile strength as the conventional bisphenol‐A‐based CFRPs. CN‐CHDMVG‐based CFRPs and CN‐VBGE‐based CFRPs underwent smooth breakdown with the treatment of hydrochloric acid in tetrahydrofuran at room temperature for 24 h to regenerate strands of carbon fibers. The surface conditions of the recovered carbon fibers had little changes during degradation and recovery processes on the basis of scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The recovered carbon fibers exhibited almost the same tensile strength as virgin carbon fibers and hence would be reused for the production of CFRPs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1052–1059  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号