首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9404篇
  免费   1329篇
  国内免费   2850篇
化学   10142篇
晶体学   217篇
力学   87篇
综合类   44篇
数学   15篇
物理学   3078篇
  2024年   8篇
  2023年   176篇
  2022年   303篇
  2021年   423篇
  2020年   670篇
  2019年   426篇
  2018年   383篇
  2017年   482篇
  2016年   552篇
  2015年   502篇
  2014年   592篇
  2013年   862篇
  2012年   597篇
  2011年   787篇
  2010年   555篇
  2009年   662篇
  2008年   595篇
  2007年   679篇
  2006年   594篇
  2005年   525篇
  2004年   446篇
  2003年   428篇
  2002年   312篇
  2001年   256篇
  2000年   247篇
  1999年   209篇
  1998年   187篇
  1997年   172篇
  1996年   146篇
  1995年   150篇
  1994年   135篇
  1993年   127篇
  1992年   104篇
  1991年   67篇
  1990年   46篇
  1989年   38篇
  1988年   41篇
  1987年   22篇
  1986年   18篇
  1985年   15篇
  1984年   7篇
  1983年   3篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1978年   2篇
  1977年   3篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
1.
Cobalt oxide (Co3O4) modified anatase titanium dioxide nanotubes (ATNTs) have been investigated for the electrochemical sensing of hydrogen peroxide (H2O2). ATNTs have been synthesized by a two-step anodization process. ATNTs were then modified with Co3O4 employing chemical bath deposition method. The structure and morphology of ATNTs and their modification with Co3O4 has been confirmed by X-ray diffraction by scanning electron microscopy. H2O2 sensing has been studied in 0.1 M PBS solution, by cyclic voltammetry and amperometry. Variation in the peak positions and current densities was observed with addition of H2O2 for Co3O4 modified ATNTs. Sensitivity and limit of detection improved with modification of ATNTs with Co3O4 with precursor concentration up to 0.8 M. However, at higher precursor concentrations sensitivity and limit of detection toward H2O2 deteriorated. Co3O4 Modified ATNTS using 0.8 M precursor concentration are comparatively more suitable for H2O2 sensing applications due to the optimum formation of Co3O4/ATNTs heterojunctions.  相似文献   
2.
Two nickel complexes, [Ni(tpen)](ClO4)2.0.5CH3COCH3 ( 1 ) and [Ni(tpbn)](ClO4)2 ( 2 ), of tetrapyridyl ligands N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,2-ethanediamine (tpen) and N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,4-butanediamine (tpbn) were prepared and their catalysis for water oxidation reaction (WOR) studied. In 0.1 M phosphate buffer solution (PBS) of pH 8.0, complex 1 is a homogeneous molecular catalyst with an overpotential of ~440 mV and a Faradaic efficiency of 89%. At pH ≥ 9.0, complex 1 degraded gradually during the catalytic process and formed NiOx composite (nickel oxide with general formula NixOyHz) active for WOR. In contrast, complex 2 deteriorated under measured conditions (pH 8.0–12.0) and formed NiOx composite active for WOR. The NiOx composite derived from 1 in 0.1 M PBS at pH 11.0 showed an activity with an overpotential of ~500 mV, a Tafel slope of ~90 mV/decade and a Faradaic efficiency of 97%. Mechanisms were proposed for water oxidation catalyzed by 1 and 2 . This work revealed that the catalytic activity of the nickel complexes was related to the flexibility of the tetrapyridyl ligands and the adaptability of the coordination sphere of the nickel(II) center.  相似文献   
3.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
4.
A polystyrene-supported phosphine oxide-catalysed Beckmann rearrangement of ketoximes in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) has been developed. Good substrate compatibility, mild reaction conditions, good yields as well as the reusability of the catalyst/solvent made this procedure more environmentally benign.  相似文献   
5.
Graphene oxide (GO) has triggered significant attention as a new type of self‐assembly membrane material. However, the low filtration flux and unstable performance of GO membrane limit its practical application. Hence, in this work, layered double hydroxides (LDHs), as a 2D material with double‐layer channel structure and positive electricity, were self‐assembled with GO at weight ratio of 7:3 by electrostatic interaction. Then, the GO/LDH hybrids combined with polydopamine (PDA) to obtain stable and high‐flux GO‐based membranes through vacuum filtration and the structure and morphology of as‐prepared samples were characterized by FT‐IR, XRD, XPS, and SEM. Furthermore, the separation performance and surface electronegativity of membranes were tested via pure water flux, rejection efficiency, recycle experiments, and zeta potential. Results revealed that the stability and flux of composite membrane were enhanced significantly compared with neat GO‐based membrane. Further, the dye rejection rate of methylene blue (MB) is higher than Congo red (CR) and rhodamine B (Rh B) and reached to 99.8%.  相似文献   
6.
A series of Fe?Ni mixed‐oxide catalysts were synthesized by using the sol–gel method for the reduction of NO by CO. These Fe?Ni mixed‐oxide catalysts exhibited tremendously enhanced catalytic performance compared to monometallic catalysts that were prepared by using the same method. The effects of Fe/Ni molar ratio and calcination temperature on the catalytic activity were examined and the physicochemical properties of the catalysts were characterized by using XRD, Raman spectroscopy, N2‐adsorption/‐desorption isotherms, temperature‐programmed reduction with hydrogen (H2‐TPR), temperature‐programmed desorption of nitric oxide (NO‐TPD), and X‐ray photoelectron spectroscopy (XPS). The results indicated that the reduction behavior, surface oxygen species, and surface chemical valence states of iron and nickel in the catalysts were the key factors in the NO elimination. Fe0.5Ni0.5Ox that was calcined at 250 °C exhibited excellent catalytic activity of 100 % NO conversion at 130 °C and a lifetime of more than 40 hours. A plausible mechanism for the reduction of NO by CO over the Fe?Ni mixed‐oxide catalysts is proposed, based on XPS and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses.  相似文献   
7.
Reduced graphene oxide (rGO)–NaBH4 is reported as mild and efficient catalyst-system for chemo-/regioselective reduction of structurally different aliphatic, aromatic as well as α,β-unsaturated aldehydes and ketones in water. The rGO was prepared by reducing graphene oxide using Tulsi leaf extract as bio-reductant. Operational simplicity, ambient reaction condition, high yield of pure products (80–97%), no by-product formation, no use of column chromatography for purification are the salient features of the envisaged protocol. Furthermore, the recovered TRGO was recycled and reused for subsequent reductions up to five times without any loss in activity.  相似文献   
8.
Recent progress on the CeO2 catalyzed synthesis of organic carbonates, ureas, and carbamates from CO2+alcohols, CO2+amines, and CO2+alcohols+amines, respectively, is reviewed. The reactions of CO2 with alcohols and amines are reversible ones and the degree of the equilibrium limitation of the synthesis reactions is strongly dependent on the properties of alcohols and amines as the substrates. When the equilibrium limitation of the reaction is serious, the equilibrium conversion of the substrate and the yield of the target product is very low, therefore, the shift of the equilibrium reaction to the product side by the removal of H2O is essential in order to get the target product in high yield. One of the effective method of the H2O removal from the related reaction systems is the combination with the hydration of 2‐cyanopyridine to 2‐picolinamide, which is also catalyzed by CeO2.  相似文献   
9.
A novel method was developed to simultaneously determine the ciprofloxacin and levofloxacin levels in human urine using an ionic‐liquid‐based, dual‐molecularly imprinted polymer‐coated graphene oxide solid‐phase extraction monolithic column coupled with high‐performance liquid chromatography. The molecularly imprinted monolithic column was prepared using ciprofloxacin and levofloxacin as templates, 1‐vinyl‐3‐ethylimidazolium bromide as the functional monomer, and graphene oxide as the core material. The resulting imprinted monoliths were characterized by scanning electron microscopy and fourier transform‐infrared spectroscopy. The efficiency and capacity of the ionic‐liquid‐based imprinted monolithic column were investigated by varying the synthesis conditions (ciprofloxacin/levofloxacin ratio and template/functional monomer/cross‐linker ratio). The solid‐phase extraction process was optimized by changing the washing and eluting conditions. The results suggested that the proposed ionic‐liquid‐based molecularly imprinted solid‐phase extraction monolithic‐high‐performance liquid chromatography method could separate ciprofloxacin and levofloxacin efficiently and simultaneously from human urine. The mean recoveries of ciprofloxacin and levofloxacin ranged from 89.2 to 93.8 and 86.7 to 94.6%, respectively. The intra‐ and interday relative standard deviation ranged from 0.9 to 3.2 and 0.8 to 2.9%, respectively. Under the optimized conditions, the recoveries of ciprofloxacin and levofloxacin were more than 93.8%.  相似文献   
10.
Liquid crystal (LC) alignment characteristics were investigated using a solution-derived lanthanum-doped zinc oxide (La:ZnO) film that was exposed to various intensities of ion-beam (IB) irradiation. At an IB intensity of 1700 eV, uniform and homogeneous LC alignment was achieved, as revealed by cross-polarized optical microscopy and pre-tilt angle measurement. Field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to verify that the IB irradiation induced physical and chemical surface reformation of the La:ZnO film that relate to LC alignment. FE-SEM and AFM revealed that the IB irradiation reformed the existing surface structure into a new structure with an altered surface roughness. The XPS results showed that the van der Waals force with anchoring energy increased as the IB intensity increased, and this profoundly affected the state of LC alignment. The capacitance-voltage (C-V) hysteresis curve was measured as a function of IB intensity to characterize the accumulated charge as a residual DC. Nearly zero C-V hysteresis was achieved at an IB intensity of 1700 eV. Therefore, a solution-derived La:ZnO film with an IB intensity of 1700 eV has great potential for high-quality LC applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号