排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Bonnie R. Hames Steven R. Thomas Amie D. Sluiter Christine J. Roth David W. Templeton 《Applied biochemistry and biotechnology》2003,105(1-3):5-16
New, rapid, and inexpensive methods that monitor the chemical composition of corn stover and corn stover-derived samples are
a key element to enabling the commercialization of processes that convert stover to fuels and chemicals. These new techniques
combine near infrared (NIR) spectroscopy and projection to latent structures (PLS) multivariate analysis to allow the compositional
analysis of hundreds of samples in 1 d at a cost of about $10 each. The new NIR/PLS rapid analysis methods can also be used
to support a variety of research projects that would have been too costly to pursue by traditional methods. 相似文献
2.
重整汽油近红外光谱的稳健偏最小二乘解析 总被引:1,自引:0,他引:1
近红外光谱(NIR)光谱复杂,组分间光谱重叠严重,目前,多元线性回归(MultipleLinearRe gression,MLR)和偏最小二乘法(PartialLeast squares,PLS)是近红外光谱分析中使用最多和效果较好的方法[1]。稳健偏最小二乘(RobustPartialLeast Squares,RPLS)是由稳健统计学构造的具有稳健性能的多元校正方法。当化学测量中引入随机异常点或误差的内在分布偏离正态分布时,它仍能给予接近最优性能的校正,确保分析结果的准确性,是消除奇异点的非常有效的方法[2-4],… 相似文献
3.
Near infrared (NIR) spectrometry was used for the rapid characterization of quality parameters in desi chickpea flour (besan). Partial least square regression, principal component regression (PCR), interval partial least squares (iPLS), and synergy interval partial least squares (siPLS) were used to determine the protein, carbohydrate, fat, and moisture concentrations of besan. Spectra were collected in reflectance mode using a lab-built predispersive filter-based instrument from 700 to 2500?nm. The quality parameters were also determined by standard methods. The root mean square error (RMSE) for the calibration and validation sets was used to evaluate the performance of the models. The correlation coefficients for moisture, fat, protein, and carbohydrates in chickpea flour exceeded 0.96 using PLS and PCR models using the full spectral range. Wavelengths from 2100 to 2345?nm had the lowest RMSE for quality parameters by iPLS. The error was further decreased by 0.41, 0.1, and 1.1% for carbohydrates, fats, and proteins by siPLS. The NIR spectral regions yielding the lowest RMSE of prediction were 1620–2345?nm for carbohydrates, 1180–1590?nm and 1860–2094?nm for fat, and 1700–2345?nm for proteins. The study shows that chickpea flour quality parameters were accurately determined using the optimized wavelengths. 相似文献
4.
5.
针对高维小样本光谱数据所显现的函数型数据(Functional data)特性、与性质参数的非线性关系及变量间存有的严重共线性,采用了样条变换集成罚函数偏最小二乘回归新技术.它首先以三次B基样条变换实现非线性光谱数据的线性化重构,随后将重构的新光谱矩阵交由罚函数偏最小二乘法(Penalized PLS)构建其与性质参变量间的校正模型,其中罚函数中的光滑因子由交叉验证优化确定以调控模型的拟合精度.最后,通过小麦样品水分含量的近红外光谱定量分析,结果显示该技术光谱数据重构稳健,去噪明显,并有效解决高维小样本的过拟合和变量间的共线性,而预测集的均方根误差(RMSEP)为0.1808%,方法的非线性校正模型预测能力得到了明显提高. 相似文献
6.
7.
采用“基于角度度量的多变量回归方法”对维纶和腈纶混纺纤维各组分含量进行检测,并与直接用偏最小二乘法(PLS)对混和纤维的预测结果作对比。实验结果显示,PLS法对维纶和腈纶预测值与实际值的线性相关系数r均为0.9457,标准偏差为6.0906,均方根误差为6.9948。角度度量法对维纶预测值与实际值的线性相关系数r为0.9990,标准偏差为0.8929,均方根误差为2.1896;对腈纶预测值与实际值的线性相关系数r为0.9928,标准偏差为2.1896,均方根误差为3.9493。实验证明,角度度量法比PLS法更能准确表达定量关系,角度度量法可以显著降低分析操作对环境的要求,满足了近红外光谱在混纺纤维定量分析上的要求。 相似文献
8.
9.
组合生成算法与多元线性回归相结合用于近红外光谱波长的优选 总被引:5,自引:0,他引:5
分立波长型近红外光谱分析仪是光谱分析仪器中较为普及的一种快速成份定量分析仪。如滤光片型、发光二极管型等。该类分析仪器研发的一个主要问题是如何针对于待测物质主要成份进行近红外光谱解析。找到最优定标波长组合用于建立稳健的定标模型。常用的波长选择方法为相关光谱结合逐步多元线性回归方法,该方法依据各参与定标波长所对应的t检验值进行最优定标波长的判别,但在实际应用中定标模型的定标精度和预测精度相差较大,具有很大的不准确性。为了实现定标波长的优选引入了组合数学中的组合生成算法。可以在较短的时间内完成最优波长组合的选取,结果是令人满意的。 相似文献
10.