首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   114篇
  国内免费   171篇
化学   768篇
晶体学   20篇
力学   8篇
综合类   1篇
物理学   122篇
  2023年   25篇
  2022年   44篇
  2021年   77篇
  2020年   65篇
  2019年   61篇
  2018年   40篇
  2017年   33篇
  2016年   49篇
  2015年   51篇
  2014年   54篇
  2013年   66篇
  2012年   48篇
  2011年   58篇
  2010年   50篇
  2009年   41篇
  2008年   35篇
  2007年   35篇
  2006年   28篇
  2005年   18篇
  2004年   14篇
  2003年   13篇
  2002年   4篇
  2001年   4篇
  1999年   2篇
  1997年   1篇
  1990年   2篇
  1986年   1篇
排序方式: 共有919条查询结果,搜索用时 16 毫秒
1.
Approximately every 100 years, as witnessed in the last two centuries, we are facing an influenza pandemic, necessitating the need to combat a novel virus strain. As a result of the new coronavirus (severe acute respiratory syndrome coronavirus type 2 [SARS-CoV-2] outbreak in January 2020, many clinical studies are being carried out with the aim of combating or eradicating the disease altogether. However, so far, developing coronavirus disease 2019 (COVID-19) detection kits or vaccines has remained elusive. In this regard, the development of antiviral nanomaterials by surface engineering with enhanced specificity might prove valuable to combat this novel virus. Quantum dots (QDs) are multifaceted agents with the ability to fight against/inhibit the activity of COVID-19 virus. This article exclusively discusses the potential role of QDs as biosensors and antiviral agents for attenuation of viral infection.  相似文献   
2.
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.  相似文献   
3.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   
4.
Cerebrovascular diseases (CVDs) are among the most serious diseases with high mortality and disability rates. The prevalent diagnosis and treatment methods of CVDs include imaging and interventional therapy. With the development of nanotechnology, large numbers of nanomaterials have been applied to the diagnosis and treatment of CVDs, mainly including carbon nanotubes, quantum dots, fullerenes, and dendrimers. In this review, the applications of nanomaterials in the field of diagnosis and treatment of CVDs, mainly including drug target delivery, imaging, therapy, endovascular treatment, and angiogenesis, are summarized. The applications of nanomaterials in the field of CVD are almost in the laboratory, and more effort is needed for clinical translation. The aim of this review is to provide useful information for future research and equipment development.  相似文献   
5.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
6.
The development of nanotechnology has led to the design of cutting‐edge nanomaterials with increasing levels of complexity. Although “traditional” solid, uniform nanoparticles are still the most frequently reported structures, new generations of nanoparticles have been constantly emerging over the last several decades. The outcome of this nano‐art extends beyond nanomaterials with alternative compositions and/or morphologies. The current state‐of‐the‐art allows for the design of nanostructures composed of different building blocks that exhibit diverse properties. Furthermore, those properties can be a reflection of either individual features, which are characteristic of a particular building block alone, and/or synergistic effects resulting from interactions between building blocks. Therefore, the unique structures as well as the outstanding properties of nanorattles have attracted increasing attention for possible biomedical and industrial applications. Although these nanoparticles resemble core–shell particles, they have a distinctive feature, which is a presence of a void that provides a homogenous environment for the encapsulated core. In this Review, we give a comprehensive insight into the fabrication of nanorattles. A special emphasis is put on the choice of building blocks as well as the choice of preparation method, because those two aspects further influence properties and thus possible future applications, which will also be discussed.  相似文献   
7.
王洁  叶雨晴  李源  马小杰  王博 《化学学报》2022,80(9):1338-1350
COVID-19在全球的大流行对人类的健康生活和社会的正常运行都造成了严重的危害. 阻断致病微生物通过受污染表面与人类间接接触传播, 或者避免与其直接接触是保护我们免受伤害的主要方法. 目前的解决措施包括设计开发抗菌抗病毒表面涂层和研发由自清洁薄膜或织物制成的个人防护设备. 综述了近年来几种研究广泛的金属、金属氧化物、金属有机框架材料等用于抗菌抗病毒涂层或薄膜的工作, 对其作用机制和微生物灭活效果进行了总结讨论, 并且评估了其本身的毒性以及实际应用的局限性, 最后就抗菌抗病毒涂层和薄膜开发的挑战和新兴研究方向提出了未来展望.  相似文献   
8.
以三缺位Keggin型硅钨酸盐为前驱体,采用化学沉淀法成功合成出2例新型纳米材料M_3SiW_9(M=Cu.,Co.)。其中,Cu_3SiW_9表现为新颖的纳米晶须形貌,Co_3SiW_9表现为尺寸均一的球形纳米颗粒。经过一系列控制实验证明,通过掺杂不同类型的金属离子可以调控M_3SiW_9的形貌。我们对产生该现象的机理进行了合理推测。此外,使用荧光素钠作为掺杂剂可使Cu_3SiW_9纳米晶须具有优良的光致发光性能,测试表明,多酸并未淬灭荧光素钠的发光,复合材料在510 nm具有明显的发射波长。最后,我们对Cu_3SiW_9纳米晶须负载CdS量子点后的光催化产氢性质进行了研究。结果表明,当Cu_3SiW_9与CdS的质量比为1∶1时,复合材料的产氢效率约为纯CdS量子点的10倍。这也证实多金属氧酸盐的存在可以有效抑制CdS量子点光生电子与空穴的复合,从而大幅提高其光解水产氢的效率。  相似文献   
9.
Microporous carbon shows the highest supercapacitor performance among other carbon nanomaterials, and thus, is considered as the most promising candidate for the fabrication of high-performance supercapacitors. However, it has puzzled the researchers as micropores do not have enough space for the formation of the so-called double layer. Several models have been proposed to explain the mechanism of energy storage by microporous supercapacitors. The most common one is that the micropores are initially filled by both anions and cations, and charging/discharging is via ion-exchange through these single row-filled micropores. Although this theory has been supported by several computational calculations, it is discussed here that this model is in disagreement with the experimental facts commonly accepted in the literature.  相似文献   
10.
Poor bonding strength between nanomaterials and cement composites inevitably lead to the failure of reinforcement. Herein, a novel functionalization method for the fabrication of functionalized graphene oxide (FGO), which is capable of forming highly reliable covalent bonds with cement hydration products, and therefore, suitable for use as an efficient reinforcing agent for cement composites, is discussed. The bonding strength between cement and aggregates was improved more than 21 times with the reinforcement of FGO. The fabricated FGO also demonstrated many important features, including high reliability in cement pastes, good dispersibility, and efficient structural refinement of cement hydration products. With the incorporation of FGO, cement mortar samples demonstrated up to 40 % increased early and ultimate strength. Such results make the fast demolding and manufacture of light constructions become highly possible, and show strong advantages on improving productivity, saving cost, and reducing CO2 emissions in practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号