首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   77篇
  国内免费   81篇
化学   502篇
晶体学   5篇
力学   3篇
物理学   69篇
  2023年   21篇
  2022年   9篇
  2021年   22篇
  2020年   44篇
  2019年   27篇
  2018年   22篇
  2017年   33篇
  2016年   49篇
  2015年   30篇
  2014年   39篇
  2013年   60篇
  2012年   35篇
  2011年   31篇
  2010年   17篇
  2009年   30篇
  2008年   37篇
  2007年   20篇
  2006年   19篇
  2005年   19篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  1983年   1篇
排序方式: 共有579条查询结果,搜索用时 359 毫秒
1.
A simple and efficient chemical method was developed to graft directly carbon nanofibers (CNFs) onto carbon fiber (CF) surface to construct a CF‐CNF hierarchical reinforcing structure. The grafted CF reinforcements via covalent ester linkage at low temperature without any usage of dendrimer or catalyst was investigated by FTIR, X‐ray photoelectron spectroscopy, Raman, scanning electron microscopy, atomic force microscopy, dynamic contact angle analysis, and single fiber tensile testing. The results indicated that the CNFs with high density could effectively increase the polarity, wettability, and roughness of the CF surface. Simultaneous enhancements of the interfacial shear strength, flexural strength, and dynamic mechanical properties as well as the tensile strength of CFs were achieved, for an increase of 75.8%, 21.9%, 21.7%, and 0.5%, respectively. We believe the facile and effective method may provide a novel and promising interface design strategy for next‐generation advanced composite structures.  相似文献   
2.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
3.
The novel use of nanofibers as a physical barrier between blood and medical devices has allowed for modifiable, innovative surface coatings on devices ordinarily plagued by thrombosis, delayed healing, and chronic infection. In this study, the nitric oxide (NO) donor S‐nitrosoglutathione (GSNO) is blended with the biodegradable polymers polyhydroxybutyrate (PHB) and polylactic acid (PLA) for the fabrication of hemocompatible, antibacterial nanofibers tailored for blood‐contacting applications. Stress/strain behavior of different concentrations of PHB and PLA is recorded to optimize the mechanical properties of the nanofibers. Nanofibers incorporated with different concentrations of GSNO (10, 15, 20 wt%) are evaluated based on their NO‐releasing kinetics. PLA/PHB + 20 wt% GSNO nanofibers display the greatest NO release over 72 h (0.4–1.5 × 10?10 mol mg?1 min?1). NO‐releasing fibers successfully reduce viable adhered bacterial counts by ≈80% after 24 h of exposure to Staphylococcus aureus. NO‐releasing nanofibers exposed to porcine plasma reduce platelet adhesion by 64.6% compared to control nanofibers. The nanofibers are found noncytotoxic (>95% viability) toward NIH/3T3 mouse fibroblasts, and 4′,6‐diamidino‐2‐phenylindole and phalloidin staining shows that fibroblasts cultured on NO‐releasing fibers have improved cellular adhesion and functionality. Therefore, these novel NO‐releasing nanofibers provide a safe antimicrobial and hemocompatible coating for blood‐contacting medical devices.  相似文献   
4.
Novel ternary composite photocatalysts have been successfully prepared by TiO₂ nanofibers, reduced graphene oxide, and CdS nanoparticles (TiO₂/rGO/CdS) by using electrospinning technique with easy chemical methods. The structures and their properties are examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The structural characterization of the composite reveals that pure TiO₂ NFs and CdS NPs crystalline very well and the reduced graphene oxide is tightly composed with TiO₂ NFs and CdS Nps. The photodegradation of methyl orange (MO) under UV light illumination is significantly enhanced compared with that of bare materials. This ternary composite degrades methyl orange within 75 min. The enhanced photocatalytic degradation performance resulted from effective separation of e–h pairs with rGO sheets and also contributed for high rate degradation efficiency. This novel ternary composite has a potential application of wastewater purification and utilization for energy conversions.  相似文献   
5.
用石墨烯和Co(CH3COO)2·4H2O作为原料,利用超声辅助法合成了锂离子电池的负极材料CoO纳米颗粒/中空石墨烯纳米纤维复合物.采用X射线衍射(XRD)确定材料的物相组成,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察材料的表面形貌和微观结构,采用X射线光电子能谱(XPS)确定材料的价态结构.采用循环伏安、恒电流充放电和交流阻抗谱表征材料的电化学性能.结果显示,在100 mA/g的电流密度下,循环了160次后,可逆容量仍超过800 mA/g,库仑效率保持在99%以上.该材料优异的电化学性能主要归因于石墨烯的中空纤维结构,中空内部可以容纳电解液,能直接将离子输送到颗粒表面,实现了离子的快速传输;二维中空纤维搭建成三维网络结构,实现了三维电子传导网络.  相似文献   
6.
In the present study, paclitaxel (PTX), multi-walled carbon nanotubes (MWCNTs), and doxorubicin (DOX) have been simultaneously doped into the poly(ϵ-caprolactone) (PCL)/chitosan/zein core-shell nanofibers to increase its cytotoxicity for MCF-7 breast cancers killing. The physico-chemical properties of synthesized nanofibers were determined by scanning electron microscope, Fourier-transform infrared spectroscopy, tensile strength, and degradation rate determinations. The in vitro release studies demonstrated the sustained release of drugs from core-shell nanofibrous scaffold. The cytotoxicity and compatibility of core-shell nanofibers were investigated by their treating with MCF-7 breast cancer cells and L929 normal cells, respectively. PCL/PTX/chitosan/zein/MWCNTs/DOX core-shell nanofibers containing 1 wt% MWCNTs, 100 μg ml−1 DOX and 100 μg ml−1 PTX had a high biocompatibility with a 84% MCF-7 cancer cells killing. The in vivo studies revealed the synergic effects of MWCNTs and anticancer drugs on the tumor inhibition. This method could be considered as a new way for developing of MWCNTs loaded-nanofibers for cancer treatment in future.  相似文献   
7.
In this study, lacquer is gathered from a lacquer tree and rotary evaporation is used to remove impurities to obtain urushiol. Next, 10 mL of anhydrous ethanol serves as the solvent for blending polyvinylpyrrolidone (PVP) at a specified content (0.7 g and 0.2–0.7 g urushiol) to form an electrospinning solution. Electrospinning is carried out with a voltage of 18 kV to prepare PVP/urushiol nanofibrous membranes. At a ratio of 7/4, the PVP/urushiol nanofibrous membranes are not eroded in 98% sulfuric acid and these membranes also demonstrate a 50–60% antibacterial effect against Staphylococcus aureus and Escherichia coli. Moreover, the antibacterial effect can be boosted to 98% with the incorporation of zinc ions. The results indicate that anhydrous ethanol can remove the sensitization of urushiol from PVP/urushiol membranes. Furthermore, animal test results indicate that when rats are in contact with PVP/urushiol anhydrous ethanol for 48 h, their skins are free from dark brown skin allergy. The presence of PVP eliminates the sensitization of urushiol, and the nanofibrous membranes demonstrate low toxicity. Hence, urushiol is the only natural material that enables PVP to withstand 98% sulfuric acid as well as acquire hydrolyzability, thereby qualify PVP as a medical material.  相似文献   
8.
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.  相似文献   
9.
Cartilage replacement materials exhibiting a set of demanding properties such as high water content, high mechanical stiffness, low friction, and excellent biocompatibility are quite difficult to achieve. Here, poly(p-phenylene-2,6-benzobisoxazole) (PBO) nanofibers are combined with polyvinyl alcohol (PVA) to form a super-strong structure with a performance that surpasses the vast majority of previously existing hydrogels. PVA–PBO composites with water contents in the 59–76% range exhibit tensile and compressive moduli reaching 20.3 and 4.5 MPa, respectively, and a coefficient of friction below 0.08. Further, they are biocompatible and support the viability of chondrocytes for 1 week, with significant improvements in cell adhesion, proliferation, and differentiation compared to PVA. The new composites can be safely sterilized by steam heat or gamma radiation without compromising their integrity and overall performance. In addition, they show potential to be used as local delivery platforms for anti-inflammatory drugs. These attractive features make PVA–PBO composites highly competitive engineered materials with remarkable potential for use in the design of load-bearing tissues. Complementary work has also revealed that these composites will be interesting alternatives in other industrial fields where high thermal and mechanical resistance are essential requirements, or which can take advantage of the pH responsiveness functionality.  相似文献   
10.
MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100–150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m2 g?1. The MoS2@C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2. The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g?1 and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g?1, as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2@C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2, and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass‐ and charge‐transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge‐transfer reaction and the diffusivity of the MoS2@C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li‐ion battery market.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号