首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   29篇
  国内免费   99篇
化学   282篇
晶体学   9篇
力学   6篇
物理学   35篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   28篇
  2020年   23篇
  2019年   26篇
  2018年   13篇
  2017年   25篇
  2016年   15篇
  2015年   21篇
  2014年   16篇
  2013年   26篇
  2012年   22篇
  2011年   19篇
  2010年   18篇
  2009年   17篇
  2008年   15篇
  2007年   6篇
  2006年   11篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
1.
For the first time, electrospun composite nanofibers comprising polymeric crown ether with polystyrene (PCE‐PS) have been used for the selective extraction of catecholamines – dopamine (DA), norepinephrine (NE) and epinephrine (E) – prior to their analysis by high‐performance liquid chromatography–electrochemical detection. Using a minicartridge packed with PCE‐PS composite nanofibers, the target compounds were extracted effectively from urine samples to which diphenylborinic acid 2‐aminoethyl ester was added as a complexing reagent. The extracted catecholamines could be liberated from the fiber by the addition of acetic acid. A good linearity was observed for catecholamines in the range of 2.0–200 ng mL?1 (NE, E and DA). The detection limits of catecholamines (signal‐to‐noise ratio = 3) were 0.5 ng mL?1 (NE), 0.2 ng mL?1 (E) and 0.2 ng mL?1 (DA), respectively. Under the optimized conditions, the absolute recoveries of the above three catecholamines were 90.6% (NE), 88.5% (E) and 94.5% (DA). The repeatability of extraction performance was from 5.4 to 9.2% (expressed as relative standard deviation). Our results indicate that the proposed method could be used for the determination of NE, E and DA in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
Unique features of nanofibers provide enormous potential in the field of biomedical and healthcare applications. Many studies have proven the extreme potential of nanofibers in front of current challenges in the medical and healthcare field. This review highlights the nanofiber technologies, unique properties, fabrication techniques (i.e., physical, chemical, and biological methods), and emerging applications in biomedical and healthcare fields. It summarizes the recent researches on nanofibers for drug delivery systems and controlled drug release, tissue‐engineered scaffolds, dressings for wound healing, biosensors, biomedical devices, medical implants, skin care, as well as air, water, and blood purification systems. Attention is given to different types of fibers (e.g., mesoporous, hollow, core‐shell nanofibers) fabricated from various materials and their potential biomedical applications.  相似文献   
3.
The contribution of electrospun nanofibrous membranes (e.NFMs) in the biosensing platforms opens up a new prospect for the invention of faster and more sensitive analytical devices. In this paper, we utilized e.NFM of polyethersulfone (PES) as a solid substrate for the protein immobilization through two different approaches: physical and covalent. Scanning electron microscopy (SEM) and Fourier‐transform‐infrared (FTIR) tests were performed to study the effect of plasma treatment on protein immobilization efficacy. Moreover, taking advantage of ELISA technique, the influence of different parameters, namely, nanofibers diameter, membrane thickness, plasma treatment time, an incubation time of ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐hydroxysuccinimide (EDC/NHS), and their ratio on antibody immobilization efficacy through two mentioned approaches, was also assessed.  相似文献   
4.
Hydroquinone (HQ) loaded polymer solution was electrospun for its topical application. Nanofibers were then investigated in terms of stability, drug release, and antifungal activity. The effect of chitosan (CS) was investigated on the viscosity, stability, drug release, and antifungal activity of the developed formulation. Results indicate a significantly stable HQ-loaded nanofiber formulation. The addition of CS caused hydration of the drug delivery system and enhanced drug release but reduced its stability. HQ-loaded nanofiber mat showed significant antifungal activity, however, there was no inhibition zone in samples containing CS.  相似文献   
5.
Particulate matter (PM) is a major air pollutant, which has a significant impact on public health. Filtration of PM through filters is a common method to protect the environment. However, the effective removal of PM with conventional filters still remains a challenge because of its small sizes. Here, we reported the formation of ultrafine polyamide 6 (PA‐6) nanofiber membranes formed with needleless electrospinning, in which both relative humidity condition and electrode type were included in the discussion. The PA‐6S nanofibers formed by using spiral electrode as a spinneret at 60% RH had the diameter of 33 nm, while the PA‐6C nanofibers formed by using cylindrical electrode had the diameter of 120 nm. With the integration of fine diameter, small pore size, and high porosity, the resultant PA‐6S nanofiber membrane exhibits high filtration efficiency of 99.42% and low pressure drop of 85.5 Pa under a face velocity of 85 L/min. Besides, it took only 10 minutes to reduce the concentration of PM2.5 from 999 to 34.1 μg/m3 when used to filter real PM particles.  相似文献   
6.
The photodegradation of poly(vinylidene fluoride) (PVDF)/titanium oxide (TiO2) nanofibers under visible light is described, something that has not been previously reported in the literature. Visible light photocatalytic electrospun PVDF/TiO2 nanofiber webs with anatase TiO2 concentration varying from 0% to 20% (0%, 1%, 3%, 5%, 10%, and 20%) are produced, and their ability to degrade a toxic pollutant, Rhodamine B (RhB), is studied. Photodegradation study using UV–vis spectroscopy on PVDF/TiO2 nanofiber webs (with TiO2 concentration of 20%) shows that 80% of RhB is degraded within 6 h at the wavelength of 546 nm, which clearly falls within the visible spectra. The color of RhB solvent catalyzed by PVDF/TiO2 nanofiber webs gradually changes from red to orange, then to yellow, further to light yellow till colorless, which suggests the complete photodegradation of RhB under visible light. To estimate the rate of photodegradation, the reaction constant k is calculated. Based on the k value, PVDF/TiO2 nanofiber webs with 20% TiO2 concentration show the highest degradation rate compared to other PVDF/TiO2 nanofiber webs and pure TiO2 nanoparticles. This study proves the viability of TiO2‐based nanofibers to have catalytic capabilities under low‐energy visible light.  相似文献   
7.
Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of errors. The mean relative error for the RSM and ANN models were 1.97% and 2.62% and the root mean square errors (RMSE) were 1.50 and 1.95, respectively. The superiority of the RSM-based approach is due to its high prediction accuracy and the ability to compute the combined effects of the electrospinning factors on the porosity of the nanofiber mats.  相似文献   
8.
The electrical impedance behavior of gellan gum (GG), GG–carbon nanotube, and GG–carbon nanofiber hydrogel composites is reported. It is demonstrated that the impedance behavior of these gels can be modeled using a Warburg element in series with a resistor. Sonolysis (required to disperse the carbon fillers) does not affect GG hydrogel electrical conductivity (1.2 ± 0.1 mS/cm), but has a detrimental effect on the gel's mechanical characteristics. It was found that the electrical conductivity (evaluated using impedance analysis) increases with increasing volume fraction of the carbon fillers and decreasing water content. For example, carbon nanotube containing hydrogels exhibited a six‐ to sevenfold increase in electrical conductivity (to 7 ± 2 mS/cm) at water content of 82%. It is demonstrated that at water content of 95 ± 2% the electrical behavior of multiwalled nanotube containing hydrogels transitions (percolates) from transport dominated by ions (owing to GG) to transport dominated by electrons (owing to the carbon nanotube network). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 864–871  相似文献   
9.
A facile three‐step co‐precipitation method is developed to synthesize graphitic carbon nanofibers (CNFs) decorated with ZnO nanoparticles (NPs). By interchanging intermediate steps of the reaction processes, two kinds of nanohybrids are fabricated with stark morphological and physicochemical differences. The morphologies differ because of the different chemical environments of the NP/nanocluster formation. The hybrid with larger and non‐uniform ZnO nanocluster size is formed in liquid phase and resulted in considerable interfacial defects that deteriorate the charge‐transfer properties. The hybrid with smaller and uniform ZnO NPs was formed in a dry solid phase and produced near‐defect‐free interfaces, leading to efficient charge transfer for superior photocatalytic performance. The results broaden the understanding of the anchoring/bonding mechanism in ZnO/CNF hybrid formation and may facilitate further development of more effective exfoliation strategies for the preparation of high‐performance composites/hybrids.  相似文献   
10.
Electrospinning is here used for the first time to prepare nanofibers including a host/guest complex in a keratin/poly(ethylene oxide) matrix. The host is a lipid binding protein and the guest is an insoluble bactericidal molecule, irgasan, bound within the protein internal cavity. The obtained nanofibers, characterized by scanning electron microscopy, exhibit excellent antibacterial activity toward Gram positive and negative bacteria, even with a moderate protein/irgasan cargo. Solution NMR studies, employed to provide molecular information on the cargo system, points to a micromolar affinity, compatible with both the electrospinning process and slow guest release. The versatility of the carrier protein, capable of interacting with a variety of druggable hydrophobic molecules, is exploitable for the development of innovative biomedical devices, whose properties can be tuned by the selected guest.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号