首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1762篇
  免费   189篇
  国内免费   85篇
化学   1734篇
晶体学   10篇
力学   27篇
综合类   2篇
数学   9篇
物理学   254篇
  2024年   1篇
  2023年   14篇
  2022年   21篇
  2021年   46篇
  2020年   56篇
  2019年   59篇
  2018年   58篇
  2017年   75篇
  2016年   109篇
  2015年   94篇
  2014年   103篇
  2013年   242篇
  2012年   107篇
  2011年   134篇
  2010年   121篇
  2009年   137篇
  2008年   143篇
  2007年   99篇
  2006年   99篇
  2005年   91篇
  2004年   76篇
  2003年   79篇
  2002年   37篇
  2001年   14篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
排序方式: 共有2036条查询结果,搜索用时 15 毫秒
1.
The new nanocomposites, Pd/C/ZrO2, PdO/ZrO2, and Pd/PdO/ZrO2, were prepared by thermal conversion of Pd@UiO-66-Zr−NH2 (MOF) in nitrogen or air atmosphere. The presence of Pd nanoparticles, uniformly distributed on the ZrO2 or C/ZrO2 matrix, was evidenced by transmission electron microscopy, scanning electron microscopy (SEM), Raman and X-ray Photoelectron Spectroscopy (XPS) methods. All pyrolysed composites retained the shape of the MOF template. They catalyze carbonylative Suzuki coupling under 1 atm CO with an efficiency significantly higher than the original Pd@UiO-66-Zr−NH2. The most active PdO/ZrO2 composite, formed benzophenone with TOF up to 1600 h−1, while by using Pd@UiO-66-Zr−NH2, much lower TOF values, 51–95 h−1, were achieved. After the reaction, PdO/ZrO2 was recovered with the same composition and catalytic activity. Very good results were also obtained in the transfer hydrogenation of benzophenones to alcohols with Pd/C/ZrO2 and PdO/ZrO2 catalysts under microwave irradiation.  相似文献   
2.
We have shown solvent- and substrate-dependent chiral inversion of a few glycoconjugate supramolecules. (Z)-F-Gluco, in which d -glucosamine has been attached chemically to Cbz-protected l -phenylalanine at the C terminus, forms a self-healing hydrogel through intertwining of the nanofibers wherein the gelators undergo lamellar packing in the β-sheet secondary structures with a single chiral handedness. Dihybrid (Z)-F-gluco nanocomposite gel was prepared by in-situ formation of silver nanoparticles AgNPs in the gel; this enhances the mechanical properties of the composite gel through physical crosslinking without altering the packing pattern. In contrast, (Z)-L-gluco bearing an l -leucine moiety does not form a hydrogel but an organogel. Interestingly, the chiral handedness of the aggregates of (Z)-L-gluco can be reversed by choosing suitable solvents. In addition to self-healing behavior, (Z)-L-gluco gel revealed shape persistency. Further, (Z)-F-gluco hydrogel is benign, nontoxic, non-immunogenic, and non-allergenic in animal cells. AgNP-loaded (Z)-F-gluco hydrogel showed antibacterial activity against both Gram-positive and Gram-negative bacteria.  相似文献   
3.
Physisorption and chemisorption of hydrogen on solid-state materials are two fundamentally different interactions, both of which display advantages and drawbacks for hydrogen storage. It has been hypothesised that their combination by merging two classes of materials showing different sorption behaviour towards hydrogen in the same composite may synergistically combine their desirable properties. As representatives of such composites, palladium nanoparticles, nanoclusters, and single atoms have been encapsulated in a metal-organic framework matrix, embedded, or immobilised in its pores, respectively. In this minireview, we review advances on the understanding and potential applications of the combination of Pd with metal-organic framework matrices through the analysis of the nanocomposite materials’ interaction with hydrogen and sorption properties.  相似文献   
4.
Abstract

Polymer/expanded graphite (EG) nanocomposites have great importance in many industrial applications mainly due to their high electrical/thermal conductivity or flame retardancy. However, to fully employ the benefits of polymer/EG nanocomposites one must consider the high degree of porosity of EG. The high degree of porosity of EG can deteriorate the composites’ mechanical properties if the polymer chains cannot diffuse completely into the EG pores. In this article, an insight is given into the diffusion of unsaturated isophthalic polyester (UP) resin, consisting of a combination of maleic anhydride and isophthalic anhydride in the resin backbone, with two viscosities, into the pores of the EG particles of various degrees of porosity. The diffusion experiments were carried out on compressed EG tablets with the same density but different porosity due to the different porosity of the EG particles. The results showed that the diffusion rate of the UP resin with higher viscosity slightly decreased when the EG porosity decreased but, in the opposite way, it strongly increased for the low viscosity UP resin. The EG nanocomposites samples were molded at varying pressures. The micrographs of the fractured surfaces of the EG nanocomposites showed that the EG pores were not filled with resin, thus the EG nanocomposites had residual pores. It was found that composites containing EGs with higher expansion ratio and larger particles and pores showed larger residual pores. Furthermore, the composites prepared with the more viscous UP resin showed more residual pores. By applying a pressure of 10?bar instead of 1?bar, a reduction of 7–20% in the residual pores of the nanocomposites was observed which led to improved mechanical properties by up to 20% in flexural strength for the EG with the highest expansion ratio.  相似文献   
5.
The immobilization of reversible addition–fragmentation chain transfer (RAFT) agents on silica for surface‐initiated RAFT polymerizations (SI‐RAFT) via the Z‐group approach was studied systematically in dependence of the functionality of the RAFT‐agent anchor group. Monoalkoxy‐, dialkoxy‐, and trialkoxy silyl ether groups were incorporated into trithiocarbonate‐type RAFT agents and bound to planar silica surfaces as well as to silica nanoparticles. The immobilization efficiency and the structure of the bound RAFT‐agent film varied strongly in dependence of the used solvent (toluene vs. 1,2‐dimethoxyethane) and the anchor group functionality, as evidenced by atomic force microscopy, transmission electron microscopy, dynamic light scattering, and UV/Vis spectroscopy. Surface‐initiated RAFT polymerizations using functionalized silica nanoparticles revealed that grafted oligomers, which often occur in SI‐RAFT, are not formed within the crosslinked structures that originate from the immobilization, and that RAFT‐agent films that show less aggregation during the immobilization are more efficient during SI‐RAFT in terms of polymer grafting density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 103–113  相似文献   
6.
The layer‐by‐layer (LBL) assembly technique is an attractive method to make functional multilayer thin films and has been applied to fabricate a wide range of materials. LBL materials could improve optical transmittance and mechanical properties if the film components were covalently bonded. Covalently bonded nanocomposite multilayer films were prepared by employing hydrophilic aliphatic polyisocyanate (HAPI) as the reactive component, to react with Laponite and polyvinyl alcohol (PVA). FT‐IR spectra suggested that HAPI reacted with Laponite and PVA at ambient temperature rapidly. Ellipsometry measurement showed that the film thickness was in linear growth. The influences of HAPI on the optical, mechanical and thermal properties of the films were investigated by UV‐Vis spectroscopy, tensile stress measurement, DSC and TGA. The obtained results showed that the optical transmittance and mechanical strength were enhanced when the film components were covalently bonded by HAPI. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 545–551  相似文献   
7.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   
8.
The recent global pandemic and its tremendous effect on the price fluctuations of crude oil illustrates the side effects of petroleum dependency more evident than ever. Over the past decades, both academic and industrial communities spared endless efforts in order to replace petroleum-based materials with bio-derived resources. In the current study, a series of shape memory polymer composites (SMPC's) was synthesized from epoxidized vegetable oils, namely canola oil and castor oil fatty acids (COFA's) as a 100% bio-based polyol and isophorone diisocyanate (IPDI) as an isocyanate using a solvent/catalyst-free method in order to eventuate polyurethanes (PU's). Thereafter, graphene oxide (GO) nanoplatelets were synthesized and embedded in the neat PU in order to overcome the thermomechanical drawbacks of the neat matrix. The chemical structure of the synthesized components, as well as the dispersion and distribution levels of the nanoparticles, was characterized. In the following, thermal and mechanical properties as well as shape memory behavior of the specimens were comprehensively investigated. Likewise, the thermal conductivity was determined. This study proves that synthesized PU's based on vegetable oil polyols, including graphene nanoparticles, exhibit proper thermal and mechanical properties, which make them stand as a potential candidate to compete with traditional petroleum-based SMPC's.  相似文献   
9.
Novel nanomaterials and advanced nanotechnology continuously push forward the rapid development of sustainable energy conversion and storage equipment. An emerging family of two-dimensional transition-metal carbides, nitrides and carbonitrides, also known as MXenes, have attracted increasing attention and in depth investigation. Benefitting from their unique intrinsic properties, MXenes have attracted significant attention and they have been considered as promising candidate materials for the development of environmentally friendly energy resources. A large number of studies show that MXenes have great potential in energy conversion and storage fields. Despite of their exceptional properties, MXenes also have some inherent characteristics, such as low capacities and unstable retention performances, which severely hinder their prospect applications in energy conversion and storage fields. In this Minireview, the latest progress on MXenes and their hybrid composites with small molecules, polymers, carbon or metal ions, and their applications in energy conversion and storage fields is highlighted, including their use in different types of batteries, supercapacitors, hydrogen/oxygen evolution reactions, electromagnetic interference absorption/shielding and solar steam generation. In addition, the critical challenges and further development prospects of MXene-based materials are also introduced.  相似文献   
10.
Although the molecular-level nanoparticle-liquid crystal (NP-LC) interactions are key for forming stable NP dispersions in LC, characterisation of these interactions is scarce in the literature. Recently, we have developed hydrogen-bonded LC nanocomposites based on mesogenic carboxylic acids and NPs functionalised with hydrogen-bond acceptor/donor groups. Here, we apply solid-state 1H and 13C NMR and Fourier transform infrared spectroscopies to model systems consisting of mixtures of trans-4-n-butylcyclohexanecarboxylic acid (4-BCHA), 4-hexylbenzoic acid (6BA) and 4,4?-bipyridine. The binary mixture, 4-BCHA:6BA, was also studied. The results were compared to monolayer quantities of 6BA and 4-BCHA adsorbed on pyridine functionalised zirconia NPs (ZrO2-n3-pyridine) to understand the different effects of the functionalised NPs on the LC properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号