首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   130篇
  国内免费   170篇
化学   1003篇
晶体学   13篇
力学   22篇
综合类   2篇
数学   12篇
物理学   263篇
  2024年   1篇
  2023年   15篇
  2022年   21篇
  2021年   34篇
  2020年   80篇
  2019年   64篇
  2018年   44篇
  2017年   66篇
  2016年   77篇
  2015年   52篇
  2014年   56篇
  2013年   152篇
  2012年   66篇
  2011年   71篇
  2010年   47篇
  2009年   52篇
  2008年   74篇
  2007年   69篇
  2006年   64篇
  2005年   54篇
  2004年   48篇
  2003年   27篇
  2002年   21篇
  2001年   20篇
  2000年   13篇
  1999年   8篇
  1998年   10篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1986年   1篇
  1984年   1篇
排序方式: 共有1315条查询结果,搜索用时 15 毫秒
1.
2.
It remains challenging to satisfy the combined performances for hydrogels with excellent mechanical behavior, high deformability, and super recoverability under harsh environmental conditions. In this study, we first established a strong polymer network via the crosslinking of polymer chains on the surfaces of sub‐5‐nm calcium hydroxide nanospherulites in ethylene glycol solvent. The organic gel expressed excellent mechanical properties such as a recoverable compressive engineering stress of 249 MPa and an elongation stress of 402 KPa, which was attributed to the uniform nanosized crosslinking structure as characterized by SEM. Moreover, the nonvolatile solvent remained in the gel, meaning that the sample can resist a wide temperature range of ?56 to 100 °C without losing the elastic properties. This novel organic gel could provide promising routes to develop the ideal elastic carriers for wearable devices, smart skin sensors, and damping materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 713–721  相似文献   
3.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   
4.
In this research, the main emphasis has been focused on the preparation of a novel Fe3O4-supported propane-1-sulfonic acid-grafted graphene oxide quantum dots (Fe3O4@GOQD-O-(propane-1-sulfonic acid)) that it was readily synthesized via a five-step procedure as a hitherto unreported magnetic nanocatalyst. This newly prepared Fe3O4@GOQD-O-(propane-1-sulfonic acid) nanocomposite was structurally well-established by different analytical techniques including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), field emission gun-scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) analyses. The high catalytic performance of this nanocomposite was exhibited in one-pot synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives under mild conditions. Low reaction times, excellent yields of the products, benignity of the catalyst, easy reaction work-up and magnetic recyclability of the catalyst are the main advantages of the present protocol. Also, our research indicated that the Fe3O4@GOQD-O-(propane-1-sulfonic acid) could be reused up to five times without considerable loss of catalytic activity.  相似文献   
5.
A nanocomposite (NC) hydrogel crosslinked by inorganic Laponite XLG was successfully synthesized via in situ free radical polymerization of monomers N,N‐diethylacrylamide and (2‐dimethylamino) ethyl methacrylate (DMAEMA). Polymerization was carried out at room temperature due to the accelerating effect of DMAEMA. The as‐prepared hydrogels displayed controlled transformation in optical transmittance and volume in response to small diversification of environmental factors, such as temperature and pH. The compressive strength of swollen D6:1G6 hydrogels was as high as 2219 kPa while compressive strain was 95%. Cyclic compression measurement exhibited good elastic properties of NC hydrogels. This work provides a facile method for fabricating stimuli‐responsive hydrogels with superior mechanical property. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 876–884  相似文献   
6.
Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study – composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks – dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.  相似文献   
7.
《Mendeleev Communications》2022,32(2):234-237
Starting from the functional cyclotriphosphazene, polysiloxane and nano-SiO2 precursors, three new hybrid nanocomposites with reinforced mechanical properties were prepared. Young’s modulus values for all the composite samples are similar in the range of 7–11 MPa, stress at fracture increases with the nano-SiO2 content increase in the material and reaches a maximum value of 36 MPa for the composite with 20% nano-SiO2. The nanocomposites investigated are elastic and demonstrate the ability to be deformed without failure up to 54% strain.  相似文献   
8.
采用水热碳化法成功制备了不同碳含量的CdS@C纳米颗粒,同时对CdS@C的晶体结构、形貌、光学性能、光电化学和光催化性能进行了研究。实验结果表明本方法制备的碳包覆CdS纳米颗粒外壳为碳层,内核为六方纤锌矿结构CdS颗粒。CdS@C颗粒分散性良好,颗粒形貌主要为类球形,粒度均匀。X射线光电子能谱(XPS)证实CdS@C颗粒表面负载的碳主要以非晶碳形式存在。紫外-可见光光谱(UV-Vis)表明CdS@C纳米晶中表面碳的敏化作用提高了可见光响应范围,使得能隙变窄。光致发光光谱(PL)表明碳包覆CdS@C纳米颗粒的发光强度比纯CdS弱,有效抑制了光生载流子的复合。瞬态光电流响应和电化学阻抗谱(EIS)说明CdS@C纳米复合材料更有效促进电子-空穴对分离和提高转移效率。CdS@C纳米复合材料在可见光辐射下表现出良好的光催化活性和稳定性,其中·O2-和h+在光催化中起主要作用。  相似文献   
9.
Efficient sunlight-responsive BiOBr–CoWO4 heterostructured nanocomposite photocatalysts were prepared via a chemical precipitation route at 100°C in 4 hours. The prepared BiOBr–CoWO4 heterostructures were characterized for phase identification, chemical composition, surface morphology, optical properties and surface area using various techniques. The X-ray diffraction pattern of the BiOBr–CoWO4 nanocomposite was composed of diffraction peaks equivalent to both the tetragonal phase of BiOBr and the monoclinic phase of CoWO4 nanoparticles. X-ray photoelectron spectral study of the BiOBr–CoWO4 nanocomposite revealed orbitals of both BiOBr and CoWO4 compounds. Transmission electron microscopy images revealed that spherical particles of CoWO4 (20–25 nm) were dispersed on the surface of BiOBr. UV–visible–near-infrared spectral study of the BiOBr–CoWO4 nanocomposite showed good visible-light absorption. Among the manufactured materials, BiOBr–CoWO4-2 nanocomposite showed better charge carrier separation efficiency, as demonstrated by photoluminescence and time-resolved fluorescence. To study the practical utility of the prepared materials, their photocatalytic capability was examined for the degradation of rhodamine B (RhB) aqueous solution under sunlight irradiation. The photodegradation results showed that BiOBr–CoWO4-2 nanocomposite degraded 98.69% RhB solution and the degradation constant was 0.067 min−1, which was 5.6 and 22.5 times larger than that of pure BiOBr and CoWO4 nanoparticles, respectively, after 60 minutes of sunlight irradiation. The superior photoactivity was facilitated by electron–hole pair separation and transfer driven by the heterostructure interface between BiOBr particles and CoWO4 nanoparticles. The removal of RhB was initiated by photogenerated h+, O2• − and OH reactive species based on the scavenger effect.  相似文献   
10.
The strategy of structurally integrating noble metal and metal oxides is expected to offer exceptional opportunities toward emerging functions of all. We report the creation of an efficient hetero-structured nanocatalyst consisting of Mn3O4 core, SiO2 shell impregnated with noble Ag nanoparticles. The triple nanocatalyst Mn3O4/Ag/SiO2 was synthesized by using a facile three-step approach to disperse Ag nanoparticles between the surfaces of functionalized Mn3O4 and SiO2. The physicochemical structural characterization was performed by XRD and FTIR. The surface morphologies were observed by SEM and TEM. The EDX measurements confirmed the composition of the composite. The nanocomposite has been used as a catalyst for the degradation of Direct blue 78 in the presence of sodium borohydride (NaBH4). It has a drastic catalytic effect as compared to Mn3O4/Ag and Mn3O4. The rate constant of Direct blue 78 reduction followed the order: Mn3O4/Ag/SiO2 (0.25166 min−1) > Mn3O4/Ag (0.07971 min−1) > Mn3O4 (0.00947 min−1). The effects of different reaction conditions of the catalytic reaction have been determined. The catalytic activity of the as- synthesized nanocomposite was examined for the binary dyes system by incorporation of an additional dye (Sunset yellow). Its influence on the degradation rate and efficiency of Direct blue 78 was investigated. The nanocatalyst exhibited excellent catalytic activity towards the complete degradation of both the Direct blue 78 and Sunset yellow. The degradation percentage for these dyes reached 99.33 and 94.68%, respectively. The recovery and reusability of the Mn3O4/Ag/SiO2 nanocomposite was studied in the reduction reaction of Direct blue 78. Five consecutive recovery reaction cycles were performed. They revealed high stability and constant efficiency of the catalyst for four cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号