首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14362篇
  免费   2656篇
  国内免费   2203篇
化学   14705篇
晶体学   172篇
力学   274篇
综合类   78篇
数学   108篇
物理学   3884篇
  2024年   29篇
  2023年   226篇
  2022年   385篇
  2021年   763篇
  2020年   891篇
  2019年   699篇
  2018年   521篇
  2017年   559篇
  2016年   800篇
  2015年   700篇
  2014年   769篇
  2013年   1401篇
  2012年   955篇
  2011年   812篇
  2010年   738篇
  2009年   827篇
  2008年   882篇
  2007年   929篇
  2006年   846篇
  2005年   781篇
  2004年   750篇
  2003年   690篇
  2002年   428篇
  2001年   398篇
  2000年   349篇
  1999年   311篇
  1998年   267篇
  1997年   202篇
  1996年   187篇
  1995年   223篇
  1994年   189篇
  1993年   118篇
  1992年   123篇
  1991年   65篇
  1990年   50篇
  1989年   61篇
  1988年   43篇
  1987年   33篇
  1986年   33篇
  1985年   41篇
  1984年   25篇
  1983年   8篇
  1982年   12篇
  1981年   22篇
  1980年   22篇
  1979年   12篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
Yandong Guo 《中国物理 B》2022,31(12):127201-127201
Controlling the spin transport at the single-molecule level, especially without the use of ferromagnetic contacts, becomes a focus of research in spintronics. Inspired by the progress on atomic-level molecular synthesis, through first-principles calculations, we investigate the spin-dependent electronic transport of graphene nanoflakes with side-bonded functional groups, contacted by atomic carbon chain electrodes. It is found that, by rotating the functional group, the spin polarization of the transmission at the Fermi level could be switched between completely polarized and unpolarized states. Moreover, the transition between spin-up and spin-down polarized states can also be achieved, operating as a dual-spin filter. Further analysis shows that, it is the spin-dependent shift of density of states, caused by the rotation, that triggers the shift of transmission peaks, and then results in the variation of spin polarization. Such a feature is found to be robust to the length of the nanoflake and the electrode material, showing great application potential. Those findings may throw light on the development of spintronic devices.  相似文献   
2.
We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6-bis((E)-((2-(dimethylamino)ethyl)imino)methyl)-4-R-phenol], where R=methyl/tert-butyl/chloro. The supramolecular study acts as a pre-screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn − Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn − Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=−7.3 kcal mol−1.  相似文献   
3.
The synthesis and characterizations for a series of dinuclear gold (I)-di-NHC complexes, 1–8 through the trans-metalation method of their respective silver (I)-di-NHC complexes, i–viii are reported (where NHC = N-heterocyclic carbene). The successful complexation of a series of unusual non-symmetrical and symmetrical di-NHC ligands, 3,3'-(ethane-1,2-diyl)-1-alkylbenzimidazolium-1'-butylbenzimidazolium (with alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, benzyl) with the gold (I) ions are suggested by elemental analysis, Fourier transform-infrared, 1H- and 13C-NMR data. The 13C-NMR spectra of 1–8 show a singlet sharp peak in the range of 190.00–192.00 ppm, indicating the presence of a carbene carbon that bonded to the gold (I) ion. From single crystal X-ray diffraction data, the structure of complex 6 with the formula of [di-NHC-Au (I)]2·2PF6 is obtained [where NHC = 3,3'-(ethane-1,2-diyl)-1-hexylbenzimidazolium-1'-butylbenzimidazolium]. The photophysical study in solid state of 6 displays an intense photoluminescence with a strong emission maxima, λem = 480 nm, upon excitation at 340 nm at room temperature. Interestingly, the emission maximum at 77 K shows a structural character with a strong peak at 410 nm, a medium at 433 nm and a weak at 387 nm, accompanied by a tail band to about 500 nm.  相似文献   
4.
Several phenoxy-imine ligands bearing o-trityl group in phenoxy moiety RN=CHArOH (Ar = C6H2(CPh3)tBu, R = 2,6-Me2C6H3 ( L 1 H ); 2,6-iPr2C6H3 ( L 2 H ); 3,5-(CF3)2C6H3 ( L 3 H ); 3,5-(OMe)2C6H3 ( L 4 H ); CHPh2 ( L 5 H ); CPh3 ( L 6 H )) were synthesized and characterized by1H NMR and 13C NMR spectroscopy. The vanadium complexes based on these ligands LVCl2(THF)2 ( 1–6 ) were synthesized via conventional transmetalation reaction in moderate to high yields. Complexes 1–6 were fully characterized by FT-IR, elemental analyses and the molecular structures of 1 , 2 ·H2O, (2 ·H2O ) 2 (μ-Cl) 2 , 4 , and 5 were confirmed by X-ray crystallographic analysis in which the six-coordinated vanadium centers are in a typical octahedral geometry. Upon activation with Et2AlCl in toluene, complexes 1–6 showed high activities in ethylene polymerization affording polymers with moderate molecular weight (5.9–11.8 × 104 Da). Moreover, in hexane or CH2Cl2, 1–6 /Et2AlCl exhibited enhanced activities. When activated with MAO or MMAO in toluene, these complexes showed relatively low activities but afforded polymers with ultra-high molecular weight (up to 3.30 × 106 Da). 1–6 /Et2AlCl also showed high activities in ethylene/1-hexene copolymerization at room temperature giving moderate molecular-weight polymers (6.5–11.4 × 104 Da) with co-monomer incorporation being of 6.0 ~ 7.8%.  相似文献   
5.
Novel polymer complexes of 8‐hydroxyquinoline‐5‐sulfonic acid hydrate ( H 2 L ) with Cu2+, Co2+ and Ni2+ chloride were prepared and characterized. Microanalysis, magnetic susceptibility, IR spectra, electron spin resonance, mass spectra, X‐ray, molar conductance, thermal, and UV–Vis spectra studies have been used to confirm the structure of the prepared polymer complexes. The molecular and electronic structures of the hydrogen bond conformers for ligand ( H 2 L ) were optimized theoretically and the quantum chemical parameters were calculated. On the basis of elemental and IR data, the chemical structure of metal chelates commensurate that the tri‐dentate (H2L) coordinate to metal chlorides through oxygen atom of phenolic OH and oxygen atom of SO3‐H group by replacing H atoms and nitrogen of the quinoline ring. The magnetic studies suggested the octahedral geometrical structure for all produced polymer complexes with general formula {[ML (OH2)3] .xH2O}n (M = Cu2+, x = 1.; Co2+, x = 2 and Ni2+, x = 2) in molar ratio (1:1). Coats–Redfern and Horowitz–Metzger methods have been used for calculating the activation thermodynamic parameters of the thermal decomposition for H 2 L and its polymer complexes. The interaction between H 2 L and its transition metal complexes with the calf thymus DNA (CT‐DNA) was determined by UV–Vis spectra. Binding efficiency between H 2 L with the receptors of the prostate cancer (PDB code 2Q7L Hormone) and the breast cancer (PDB code 1JNX Gene regulation) was studied by molecular docking. The inhibition behaviour of H 2 L against the corrosion of carbon steel / HCl (2 M) solution was studied by weight loss, Tafel polarisation, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The adsorption isotherm was found to be Friendlish isotherm. The morphology of inhibited carbon steel? s surface was studied using scanning electron microscope (SEM) and energy dispersive X‐ray spectroscopy (EDS).  相似文献   
6.
Modulation of material properties and growth factor application are critical in constructing suitable cell culture environments to induce desired cellular functions. Sulfonated polyrotaxane (PRX) surfaces with immobilized vascular endothelial growth factors (VEGFs) are prepared to improve network formation in vascular endothelial cells. Sulfonated PRXs, whereby sulfonated α‐cyclodextrins (α‐CDs) are threaded onto a linear poly(ethylene glycol) chain capped with bulky groups at both terminals, are coated onto surfaces. The molecular mobility of sulfonated PRX surfaces is modulated by tuning the number of threading α‐CDs. VEGF is immobilized onto surfaces with varying mobility. Low mobility and VEGF‐immobilization reinforce cell proliferation, yes‐associated protein activity, and rhoA, pdgf, ang‐1, and pecam‐1 gene expression. Highly mobile surfaces and soluble VEGF weakly affect these cell responses. Network formation is strongly stimulated in vascular endothelial cells only on low‐mobility VEGF‐immobilized surfaces, suggesting that molecular mobility and VEGF immobilization synergistically control cell function.  相似文献   
7.
Diabetes mellitus (DM) is the fastest growing metabolic disorder in the world. Recently, more attention is paid to the study of natural products due to side effects of synthetic drugs. Stevia rebaudiana (Bertoni) is considered an encouraging starting point for the antidiabetic lead development. In the present study, the in vitro α-amylase inhibitory activity of the extracts of S. rebaudiana is investigated. In order to understand the molecular mechanism and future pharmacophore development, in silico study of secondary metabolites isolated from S. rebaudiana was carried out. Results indicated that water extract shows highest α-amylase inhibitory activity as compared to other extracts. Moreover, compound 20 (rebaudioside A) which has been previously reported and isolated from water extract showed the impressive binding profile with α-amylase. Therefore, our study suggests that S. rebaudiana could be used in the development of therapeutic drugs for the treatment of diabetes.  相似文献   
8.
Aldehydes are important compounds in a large number of samples, especially food and beverages. In this work, for the first time, cyclohexane‐1,3‐dione (CHD) was used as a derivatizing reagent aiming aldehyde (formaldehyde, acetaldehyde, propionaldehyde, and valeraldehyde) analysis by MEKC‐DAD. The optimized separation of the derivates was performed using a voltage program (+20 kV, 0–15 min.; +23 kV, 15–17 min.) at a temperature of 26°C, and using as the running buffer a mixture containing 100 mmol/L of sodium dodecyl sulfate and 29 mmol/L of sodium tetraborate at pH 9.2, with maximum absorbance at 260 nm. CHD was compared with two other derivatizing agents: 3‐methyl‐2‐benzothiazolinone hydrazone and phenylhydrazine‐4‐sulfonic acid. The CHD‐aldehyde derivatives were also characterized by LC‐MS. The calibration curves for all aldehydes had r2 above 0.999 and LODs ranged from 0.01 to 0.7 mg/L. The optimized methodology was applied in sugar cane brandy (cachaça) samples successfully. CHD showed to be an alternative derivatization reagent due to its stability, aqueous solubility, high selectivity and sensitivity, reduced impurities, and simple preparation steps.  相似文献   
9.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   
10.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号