首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10086篇
  免费   1779篇
  国内免费   2072篇
化学   6901篇
晶体学   175篇
力学   1236篇
综合类   109篇
数学   1611篇
物理学   3905篇
  2024年   16篇
  2023年   125篇
  2022年   265篇
  2021年   334篇
  2020年   464篇
  2019年   359篇
  2018年   322篇
  2017年   383篇
  2016年   486篇
  2015年   377篇
  2014年   597篇
  2013年   1225篇
  2012年   697篇
  2011年   741篇
  2010年   576篇
  2009年   621篇
  2008年   641篇
  2007年   711篇
  2006年   630篇
  2005年   634篇
  2004年   617篇
  2003年   508篇
  2002年   448篇
  2001年   345篇
  2000年   312篇
  1999年   234篇
  1998年   181篇
  1997年   134篇
  1996年   130篇
  1995年   153篇
  1994年   106篇
  1993年   96篇
  1992年   91篇
  1991年   57篇
  1990年   50篇
  1989年   37篇
  1988年   29篇
  1987年   30篇
  1986年   18篇
  1985年   23篇
  1984年   28篇
  1983年   8篇
  1982年   24篇
  1981年   18篇
  1980年   13篇
  1979年   15篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We investigate the possibility of phantom crossing in the dark energy sector and the solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the Cosmic Microwave Background (CMB), local measurement of Hubble constant (H0), Baryon Acoustic Oscillation (BAO) and SnIa for this purpose. For a combination of CMB+BAO data that is related to early universe physics, phantom crossing in the dark energy sector was confirmed at a 95% confidence level and we obtained the constraint H0=71.03.8+2.9 km/s/Mpc at a 68% confidence level, which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combinations of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtained the constraint H0=70.25±0.78 km/s/Mpc at a 68% confidence level and the phantom crossing happening at the scale factor am=0.8510.031+0.048 at a 68% confidence level.  相似文献   
2.
Azaperone, with anti-anxiety and anti-aggressive activities used in veterinary medicine, is a member of the butyrophenone class. It is ordinarily utilized for a wide range of indications, such as sedation, obstetrics, and anesthesia. In this research, an improved synthetic route is presented for azaperone using a phase-transfer catalyst(PTC). In general, it was synthesized as a dopamine antagonist in four steps. The bis(2-chloroethyl) amine intermediate is easily obtained after the conversion of the alcohol groups into the chloride leaving group using thionyl chloride(95% yields). The alkylation of commercially available 2-amino pyridine in the presence of PTC was then carried out, giving 1-(pyridin-2-yl) piperazine with 75% yield. 1-(Pyridin-2-yl) piperazine was finally alkylated using 4-chloro-1-(4-fluorophenyl) butan-1-one to achieve azaperone with 60% yield. The butyrophenone intermediate was obtained via the Friedel-Crafts reaction of fluorobenzene with 4-chlorobutyryl chloride in the presence of AlCl3. High efficiency, gentle reaction conditions, and fast and simple procedure are the advantages of this method. Also, the electrochemical oxidation behaviour of azaperone was investigated using cyclic and differential pulse voltammetry techniques. Cyclic voltammetric studies indicated an irreversible process for azaperone electro-oxidation with a peak potential of 0.78 V in a phosphate buffer solution(pH=7.0) vs. Ag/AgCl(saturated KCl) electrode. The value of the peak current vs. the azaperone concentration was enhanced linearly in the range of 10―70 μmol/L, and the detection limit was found to be 3.33 μmol/L.  相似文献   
3.
Asymmetric mode transformation in waveguide is of great significance for on-chip integrated devices with one-way effect, while it is challenging to achieve asymmetric nonlinear-mode-conversion (NMC) due to the limitations imposed by phase-matching. In this work, we theoretically proposed a new scheme for realizing asymmetric NMC by combining frequency-doubling process and periodic PT symmetric modulation in an optical waveguide. By engineering the one-way momentum from PT symmetric modulation, we have demonstrated the unidirectional conversion from pump to second harmonic with desired guided modes. Our findings offer new opportunities for manipulating nonlinear optical fields with PT symmetry, which could further boost more exploration on on-chip nonlinear devices assisted by non-Hermitian optics.  相似文献   
4.
A hybrid isothermal model for the homogeneous-heterogeneous reactions in ferrohydrodynamic boundary layer flow is established. The characteristics of Newtonian heating and magnetic dipole in a ferrofluid due to a stretchable surface is analyzed for three chemical species. It is presumed that the isothermal cubic autocatalator kinetic gives the homogeneous reaction and the first order kinetics gives the heterogeneous (surface) reaction. The analysis is carried out for equal diffusion coefficients of all autocatalyst and reactions. Heat flux is examined by incorporating Fourier's law of heat conduction. Characteristics of materialized parameters on the magneto-thermomechanical coupling in the flow of a chemically reactive species are investigated. Further, the heat transfer rate and friction drag are depicted for the ferrohydrodynamic chemically reactive species. It is evident that the Schmidt number has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases is found an excellent agreement.  相似文献   
5.
Dan‐Huang‐Qu‐Yu capsule, a Chinese herbal medicine compound preparation, is widely used for chronic pelvic inflammatory disease. In this study, a rapid, selective, and sensitive microwave‐assisted extraction ultra‐high‐performance liquid chromatography‐Q Exactive quadrupole‐orbitrap high‐resolution mass spectrometry method was developed for analyzing its chemical compositions. A total of 85 compounds, including 22 flavonoids, 8 terpenoids, 5 quinones, 5 phthaleolactone, 23 organic acids, and 22 other compounds were identified from Dan‐Huang‐Qu‐Yu capsule. Among them, 35 major compounds were unambiguously detected by comparing them with reference standards and selected as quality control markers, which were simultaneously determined in Dan‐Huang‐Qu‐Yu capsule. The established method was successfully validated and applied for simultaneous determination of 35 bioactive compounds in Dan‐Huang‐Qu‐Yu capsule from ten sample batches. The quantitative data of the analytes were analyzed by principal component analysis for quality assessment of Dan‐Huang‐Qu‐Yu capsule. Six compounds (e.g., astragaloside IV, salvianolic acid B, ellagic acid, chlorogenic acid, N‐butylidenephthalide, and luteolin) were screened out and regarded as chemical markers for quality control of Dan‐Huang‐Qu‐Yu capsule. The established method has been proved to be a novel and useful tool for rapid research of Dan‐Huang‐Qu‐Yu capsule. This research will provide reference for the scientific research of traditional Chinese medicines.  相似文献   
6.
This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like chemical vapor deposition and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and Raman spectroscopy for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.  相似文献   
7.
8.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
9.
In the present studies, the synthesis of new energetic materials based on the pyridazine scaffold and their characterization is the main subject. For this purpose, desired 3,5‐dimethoxy‐4,6‐dinitropyridazine‐1‐oxide ( 7 ) was synthesized in the first instance. The persubstituted pyridazine precursor laid the groundwork for further preparative modification. The targeted functionalization through the regioselective introduction of various smaller amine nucleophiles such as methylamine or 2‐aminoethanol gave several new energetic materials. Among them are 3,5‐bis(methylamino)‐4,6‐dinitropyridazine‐1‐oxide ( 8 ), 3,5‐bis(methylnitramino)‐4,6‐dinitropyridazine‐1‐oxide ( 9 ), 3,5‐bis(dimethylamino)‐4,6‐dinitropyridazine‐1‐oxide ( 10 ), and 3,5‐bis((2‐hydroxyethyl)amino)‐4,6‐dinitropyridazine‐1‐oxide ( 11 ). With the aim of increasing the detonation performance, compound 8 was additionally nitrated and 3,5‐bis(methylnitramino)‐4,6‐dinitropyridazine‐1‐oxide ( 9 ) was obtained. These new energetic materials were characterized and identified by multinuclear NMR (1H, 13C, 14N, 15N) and IR spectroscopy, elemental analysis and mass spectrometry. In addition, their sensitivities toward impact, friction and electrostatic discharge were thoroughly examined. Furthermore, obtained single‐crystals of the substances were characterized by low‐temperature single‐crystal X‐ray diffraction.  相似文献   
10.
Ethanol conversion to high-value-added products has attracted considerable attention in both academic research and industrial fields. In this study, we synthesized a series of tunable acid–base bifunctional Zn-Zr-Al metal oxides (represented as Zn2ZrxAl-MMO) in light of the structural topotactic transformation of Zn2ZrxAl-hydrotalcite precursors (Zn2ZrxAl-LDH). The resulting Zn2ZrxAl-MMO catalysts were employed in the conversion of ethanol to diethyl carbonate. The Zr4+ ion content of the LDH precursor plays a key role in modulating the acid-base properties and determining catalytic performance: the Zn2Zr0.1Al-MMO sample exhibits the optimal catalytic behavior with a diethyl carbonate (DEC) yield of 42.1%, which is the highest reported for metal oxide catalysts. Structure-property correlation investigations revealed that the synergic catalysis between medium-strong basic sites and weak acid sites plays a predominant role in the catalytic behavior. Furthermore, in situ Fourier transform infrared measurements showed that the weak acidic site promotes activation adsorption of the reactant (urea) and the intermediate product (ethyl carbamate), while the medium-strong basic site accelerates ethanol activation. Moreover, the Zn2Zr0.1Al-MMO catalyst has the advantages of cost effectiveness, good stability, and reusability. Therefore, the acid-base bifunctional catalysts developed in this work can be employed as promising candidates in acid-base catalytic reactions such as ethanol conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号