首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   1篇
化学   14篇
物理学   1篇
  2024年   1篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2017年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D-QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.  相似文献   
2.
The growing numbers related to plastic pollution are impressive, with ca. 70 % of produced plastic (>350 tonnes/year) being indiscriminately wasted in the environment. The most dangerous forms of plastic pollution for biota and human health are micro- and nano-plastics (MNPs), which are ubiquitous and more bioavailable. Their elimination is extremely difficult, but the first challenge is their detection since existing protocols are unsatisfactory for microplastics and mostly absent for nanoplastics. After a discussion of the state of the art for MNPs detection, we specifically revise the techniques based on photoluminescence that represent very promising solutions for this problem. In this context, Nile Red staining is the most used strategy and we show here its pros and limitations, but we also discuss other more recent approaches, such as the use of fluorogenic probes based on perylene-bisimide and on fluorogenic hyaluronan nanogels, with the added values of biocompatibility and water solubility.  相似文献   
3.
Microplastics (MPs) have attracted wide attention all over the world as a remarkable pollutant. While MPs are spreading throughout several complex environmental matrices, various experiments till date have been preliminary concentrate on aquatic ecosystems. Terrestrial sources namely solid waste-origin have remains unexplored, although they contribute largely for aquatic microplastics origin. Simultaneously, terrestrial systems under human activity, like healthcare units, are likely to be polluted by various plastic ingredients. Solid waste MPs sources primarily include sanitary landfilling, food waste, wastewater treatment end-product (sludge), tire wear, textile washing and paint failure. These microplastics caused adverse impacts on ecosystem, environment, and health. Accordingly, the present study addressed solid waste MPs’ occurrence and sources, identification, quantification, characterization, fate, and degradation pathways for developing comprehensive management strategies following the principles of circular economy. In particularly, this paper critically demonstrated solid waste MPs sources, solid waste MPs sampling followed by identification and quantification by adopting combined chemical (e.g., spectroscopy viz., Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy), physical (e.g., microscopy such as transmission or scanning electronic microscopy, TEM or SEM) and thermal analyses. Additionally, the strengths and limitations of each analytical technique are discussed critically with practical aspect. Further, the MPs related national and international regulations or laws and their subsequent relevance to solid waste MPs management with future challenges are discussed very critically. Finally, the outcomes of the review paper will be valuable to different stakeholders for effective policy implementation.  相似文献   
4.
Microplastics pollution is becoming one of the most serious threats to the surface ecosystem of the earth; it is widespread in oceans, rivers, sediments, soils, and organisms. It is a growing concern as an environmental pollutant, which currently has no clear detection standard. Detection methods still need to be constantly supplemented and improved. This study explored a novel method called time-of-flight secondary ion mass spectrometry (ToF-SIMS) in this field. Four types of microplastics in farmland soils, namely, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polyamide 6, were successfully identified in terms of particle size and abundance by combining the high molecular specificity with ion imaging capability of ToF-SIMS. The procedure based on ToF-SIMS analysis also provides a methodological reference and basic data for the investigation and research of microplastics in soil, coastal beaches, and sediment.  相似文献   
5.
微塑料(MPs)的出现引起了全球的广泛关注,它们遍布海洋和陆地的各个环境介质中,造成了严重的环境污染。微塑料通常被定义为粒径小于5 mm的塑料纤维、颗粒或者薄膜,可被生物吸收积累,产生生态风险和健康风险。实际上很多微塑料可达微米乃至纳米级别,肉眼是不可见的,因此也被形象地比作海洋中的“PM2.5”。作为目前学术界和社会各界争论的热点问题,本篇综述旨在系统地介绍环境中微塑料的来源与分布、生物效应以及分析鉴定方法,并重点介绍了微塑料污染的降解策略和研究成果,为今后微塑料降解方法的研究提供了参考。  相似文献   
6.
The so-called marine litter, and in particular microplastics (MPs) and nanoplastics (NPs), are ubiquitously distributed and recognised as an emerging risk for the environment and human health. It is known that marine environments are one of the most impacted areas and among them; coastal zones are the most contaminated ones. They are subjected to population pressure, tourism, harbours, desalination plants, marine traffic and fish farms.This review is focused on the Mediterranean Sea, currently considered one hot spot of microplastics pollution in the world, as a consequence of the high number of plastic marine litter generating activities and its characteristic morphology of semi-enclosed sea. MPs and NPs have been detected not only in surface water and water columns but also in sediments, deep seafloor, and biota including fish and seafood for human consumption. Because of this, different European legislation initiatives have been launched during the last years in order to prevent MPs and NPs contamination and to face derived problems. Finally, this review summarises the main problems and shortcomings associated to MPs and NPs analyses such as their identification and quantification or the necessity of standardised protocols.  相似文献   
7.
Filtration is an established water‐purification technology. However, due to low flow rates, the filtration of large volumes of water is often not practical. Herein, we report an alternative purification approach in which a magnetic nanoparticle composite is used to remove organic, inorganic, microbial, and microplastics pollutants from water. The composite is based on a polyoxometalate ionic liquid (POM‐IL) adsorbed onto magnetic microporous core–shell Fe2O3/SiO2 particles, giving a magnetic POM‐supported ionic liquid phase (magPOM‐SILP). Efficient, often quantitative removal of several typical surface water pollutants is reported together with facile removal of the particles using a permanent magnet. Tuning of the composite components could lead to new materials for centralized and decentralized water purification systems.  相似文献   
8.
土壤微塑料污染及生态环境效应研究进展   总被引:1,自引:0,他引:1  
微塑料作为一种新的污染物,具有粒径小、疏水性强、性质稳定、可以吸附多种污染物等特点,近年来受到了广泛的关注。目前关于微塑料的研究主要集中在水环境中,土壤环境中的微塑料研究相对滞后。土壤与人类生活息息相关,但土壤微塑料污染的现状却不容乐观,土壤微塑料的环境效应需要重视。本文综述了土壤微塑料的来源、分离和鉴定方法、微塑料在土壤环境中的行为和生态效应,并对土壤微塑料的研究前景进行了展望。  相似文献   
9.
微塑料富集金属铅元素的能力与特征分析   总被引:1,自引:0,他引:1  
以微塑料为载体,考察了其对溶液中铅离子的富集能力。首先利用2%HNO_3为解吸溶液,并用超声波仪进行辅助解吸,然后用电感耦合等离子体质谱仪(ICP-MS)测定其吸附的铅含量,从而研究微塑料吸附铅离子的能力。对微塑料的材质、吸附时间、粒径、离子浓度、选择性以及共存离子等进行了考察,分析了微塑料吸附铅离子的特征。实验结果表明:不同材质的微塑料对铅离子的吸附能力不同,其中聚氯乙烯(PVC)、聚丙烯(PP)吸附量最高,分别达到1.32μg/g和0.63μg/g。微塑料粒径越大,其对铅离子的吸附量越低。随着吸附时间和铅离子浓度的增加,微塑料对铅离子的吸附效率出现先升后降的趋势。共存离子实验表明,当溶液中存在其他离子时,不同材质的微塑料对铅离子的吸附能力受到不同程度的影响,当铅离子和铜离子共存时,2种离子存在竞争性吸附现象。该文探索了微塑料对铅离子的吸附特性,可为深入研究海洋中微塑料富集重金属及其环境行为提供理论基础。  相似文献   
10.
Jing Wang 《中国物理 B》2022,31(11):118104-118104
Microplastic pollution has become a global environmental concern. It has been reported that microplastics are easily accessible to a wide range of aquatic organisms and ultimately enter the human body along the food chain. They pose a severe threat to ecosystems, organisms and even human health due to their durability and persistence. However, how to reduce microplastic pollution still remains a challenge in terms of scientific techniques and policy-making. There is currently still a lack of effective methods for microplastic recycling and removal. Luckily, a new technique, micro-nanobubbles (MNBs), may provide a possible and highly effective method to enrich microplastic pollution: their great advantages[1] include a high specific surface area, long lifetime and ability to adsorb microplastics of the same size and hydrophobicity. Then they further adsorb on larger bubbles such as microbubbles or millimeter bubbles and float to the water surface together. In this study, we present a new method using MNBs to enrich microplastic pollution with high efficiency. Two types of microplastics, millimeter-scale plastic fragments and microplastic particles, were chosen as the model microplastic pollution systems to study the enrichment efficiency of MNBs on microplastics. Results showed that MNBs can efficiently enrich these microplastics. The enrichment efficiency increases with flotation time until a maximum value is reached. It is proved that MNBs not only collect the microplastic pollution but also reduce detergent use in domestic laundry sewage. This is because detergent, as a surfactant, is easily absorbed on the surface of MNBs and can be collected together with the microplastic pollution. Our research has demonstrated that the MNB technique could be promising for use in microplastic recycling and reducing detergent pollution in daily life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号