首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4701篇
  免费   241篇
  国内免费   245篇
化学   5047篇
晶体学   2篇
力学   8篇
综合类   9篇
数学   2篇
物理学   119篇
  2024年   1篇
  2023年   57篇
  2022年   70篇
  2021年   81篇
  2020年   113篇
  2019年   119篇
  2018年   78篇
  2017年   110篇
  2016年   108篇
  2015年   135篇
  2014年   112篇
  2013年   166篇
  2012年   254篇
  2011年   216篇
  2010年   245篇
  2009年   290篇
  2008年   244篇
  2007年   261篇
  2006年   379篇
  2005年   543篇
  2004年   327篇
  2003年   282篇
  2002年   148篇
  2001年   101篇
  2000年   106篇
  1999年   113篇
  1998年   102篇
  1997年   107篇
  1996年   82篇
  1995年   74篇
  1994年   49篇
  1993年   30篇
  1992年   25篇
  1991年   21篇
  1990年   11篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
排序方式: 共有5187条查询结果,搜索用时 15 毫秒
1.
A capillary electrophoresis-acid barrage stacking online enrichment method has been established to detect the four isoflavones which are Daidzein, Genistein, Formononetin, and Biochanin A. The proposed method was optimized using a single factor alternative method, and the optimal conditions obtained from the optimization were: the BGE was 25 mM borax and 2 mM β-cyclodextrin, the applied separation voltage was 20 kV, and the detection wavelength was 260 nm. The time ratio of the injection of sample and the injection of acid was 150 s:20 s, and the acid used was 250 mM acetic acid. The sample solvent used was 60% v/v acetonitrile. The established method had the enrichment factor of these four isoflavones at 24.5, 32.0, 29.2, and 33.7, respectively, LOD and LOQ are as low as nanograms per milliliter. Finally, the CE-acid barrage stacking method was successfully applied to the determination of four isoflavones in rat plasma and red clover extract, verifying the applicability and feasibility of the method.  相似文献   
2.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
3.
Selection of affinity ligands for protein targets from oligonucleotide libraries currently involves multiple rounds of alternating steps of partitioning of protein‐bound oligonucleotides (binders) from protein‐unbound oligonucleotides (nonbinders). We have recently introduced ideal‐filter capillary electrophoresis (IFCE) for binder selection in a single step of partitioning. In IFCE, protein‐binder complexes and nonbinders move inside the capillary in the opposite directions, and the efficiency of their partitioning reaches 109, i.e., only one of a billion molecules of nonbinders leaks through IFCE while all binders pass through. The condition of IFCE can be satisfied when the magnitude of the mobility of EOF is smaller than that of the protein‐binder complexes and larger than that of nonbinders. The efficiency of partitioning in IFCE is 10 million times higher than those of solid‐phase‐based methods of partitioning typically used in selection of affinity ligands for protein targets from oligonucleotide libraries. Here, we provide additional details on our justification for IFCE development. We elaborate on electrophoretic aspects of the method and define the theoretical range of EOF mobilities that support IFCE. Based on these theoretical results, we identify an experimental range of background electrolyte's ionic strength that supports IFCE. We also extend our interpretation of the results and discuss in‐depth IFCE's prospective in practical applications and fundamental studies.  相似文献   
4.
The review is focused on the latest developments in the analysis of proteins and peptides by capillary electrophoresis techniques coupled to mass spectrometry. First, the methodology and instrumentation are overviewed. In this section, recent progress in capillary electrophoresis with mass spectrometry interfaces and capillary electrophoresis with matrix‐assisted laser desorption/ionization is mentioned, as well as separation tasks. The second part is devoted to applications—mainly bottom‐up and top‐down proteomics. It is obvious that capillary electrophoresis with mass spectrometry methods are well suited for peptide and protein analysis (proteomic research) and it is described how these techniques are complementary and not competitive with the often used liquid chromatography with mass spectrometry methods.  相似文献   
5.
Technical advances in the development of field-deployable capillary and microchip electrophoretic instruments and reports of their deployment between 2013 and 2017 were reviewed. Strategies and considerations in the design of the injection, separation and detection hardware, chemistry and associated infrastructure were discussed from an in-field perspective, with portability, robustness and automation/“ease of use” featuring as key requirements. Integration of functionality is important for adequate in-field performance. Progress was made towards the use of multiple channel devices for increased throughput and/or resolving power, mixing devices for on-line/in-line sample derivatization, battery operation and temperature control. The strengths and weaknesses of the various approaches described in the literature are discussed from the perspective of in-field operation. An overview of the applications of the field electrophoretic instruments is provided, including environmental science and planetary investigation.  相似文献   
6.
Creatinine is an important diagnostic marker and is also used as a standardization tool for the quantitative evaluation of exogenous/endogenous substances in urine. This study aimed at evaluating and comparing three analytical approaches, based on hyphenations of different separation [two-dimensional capillary isotachophoresis (CITP–CITP), capillary zone electrophoresis (CZE), ultra-high-performance liquid chromatography (UHPLC)] and detection [conductivity (CD), ultraviolet (UV), tandem mass spectrometry (MS/MS)] techniques, for their ability to provide reliable clinical data along with their suitability for the routine clinical use (cost, simplicity, sample throughput). The developed UHPLC–MS/MS, CITP–CITP–CD, and CZE–UV methods were characterized by favorable performance parameters, such as linearity (r ˃ 0.99), precision (relative standard deviation, 0.22–2.97% for the creatinine position in analytical profiles), and recovery (87.1–115.1%). Clinical data, obtained from the analysis of 24 human urine samples by a reference enzymatic method, were comparable with those obtained by the tested methods (Passing–Bablok regression and Bland–Altman analysis), approving their usefulness for the routine clinical use. In this context, the UHPLC–MS/MS method provides benefits of enhanced orthogonality/accuracy and high sample throughput (threefold shorter total analysis times than the CE methods), whereas advantages of the CE methods for routine labs are simplicity and low cost of both the instrumentation and measurements.  相似文献   
7.
A sensitive micellar electrokinetic chromatography method is presented to simultaneously quantify ofloxacin, gatifloxacin, dexamethasone sodium phosphate and prednisolone acetate. The method has the advantages of being rapid, accurate, reproducible, ecologically acceptable and sensitive. The electrophoretic separation utilized 20 mm borate buffer as background electrolyte with pH 10.0 ± 0.1 and 50 mm sodium dodecyl sulfate as a micelle forming molecule. A capillary tube (50 μm i.d., 33 cm) of fused silica was used and on-column diode array detection at 243 nm for dexamethasone sodium phosphate and prednisolone acetate, and 290 nm for ofloxacin and gatifloxacin. Various factors were optimized such as the background electrolyte (type, concentration and pH), addition of sodium dodecyl sulfate and its concentration, detection wavelength, applied voltage and injection parameters. The studied drugs were efficiently separated in 6.2 min, at 20 kV with high resolution. The greenness of the method was estimated using an eco-scale tool and the presented method was found to have excellent green characteristics. The method was validated in conformance with International Conference on Harmonization guidelines, with acceptable accuracy, precision and selectivity. The suggested method can be employed for the economic analysis of the four drugs in dissimilar binary combinations of eye drops saving solvents and chemicals.  相似文献   
8.
Western blotting is a highly valued method for protein identification and relative quantitation in complex samples. It combines size-based electrophoretic separation with immunoaffinity to identify specific proteins. This technique remains popular and has become a workhorse in biochemical research and clinical laboratories. Despite its utility and popularity, this method has many limitations including slow analysis, incompatibility with limited sample application, low throughput and low information content. Recently there has been significant success in improving different aspects of Western blotting. In this review, we provide an overview of the developments in the area of improving conventional Western blotting methods with a focus on recent developments in microfluidic Western blotting. We overview different separation platforms, and discuss studies on protein transfer methods as well as protein immobilization methods and chemistries. We also describe integrated miniaturized platforms that can perform rapid separations and immunodetections.  相似文献   
9.
Many efforts have been made toward the achievement of high sensitivity in capillary electrophoresis coupled with chemiluminescence detection (CE‐CL). This work describes a novel dual‐signal amplification strategy for highly specific and ultrasensitive CL detection of human platelet‐derived growth factor–BB (PDGF–BB) using both aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (HRP–AuNPs–aptamer) as nanoprobes in CE. Both AuNPs and HRP in the nanoprobes could amplify the CL signals in the luminol–H2O2 CL system, owing to the excellent catalytic behavior of AuNPs and HRP in the CL system. Meanwhile, the high affinity of aptamer modified on the AuNPs allows detection with high specificity. As proof‐of‐concept, the proposed method was employed to quantify the concentration of PDGF–BB from 0.50 to 250 fm with a detection limit of 0.21 fm. The applicability of the assay was further demonstrated in the analysis of PDGF–BB in human serum samples with acceptable accuracy and reliability. The result of this study exhibits distinct advantages, such as high sensitivity, good specificity, simplicity, and very small sample consumption. The good performances of the proposed strategy provide a powerful avenue for ultrasensitive detection of rare proteins in biological sample, showing great promise in biochemical analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
Duloxetine (DLX) is a widely used antidepressant drug belonging to the class of selective serotonin and norepinephrine reuptake inhibitors (SNRIs); its efficacy has been demonstrated in the treatment of not only major depressive disorders but also diabetic neuropathic pain, generalized anxiety disorder, fibromyalgia or stress urinary incontinence. It is a chiral substance and is used in therapy in the form of the enantiopure S‐DLX, which is twice as active as R‐DLX. Several methods have been published for the achiral and chiral determination of DLX in pharmaceuticals, biological materials and environmental samples, the majority using liquid chromatography and capillary electrophoresis coupled with different detection techniques (UV detection, fluorescence, mass spectrometry). The aim of the current review is to provide a systematic survey of the analytical techniques used for the determination of DLX from different matrices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号