首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11308篇
  免费   1416篇
  国内免费   2562篇
化学   11205篇
晶体学   46篇
力学   266篇
综合类   121篇
数学   2204篇
物理学   1444篇
  2024年   6篇
  2023年   159篇
  2022年   224篇
  2021年   355篇
  2020年   567篇
  2019年   464篇
  2018年   423篇
  2017年   396篇
  2016年   496篇
  2015年   464篇
  2014年   622篇
  2013年   1175篇
  2012年   731篇
  2011年   715篇
  2010年   626篇
  2009年   640篇
  2008年   772篇
  2007年   802篇
  2006年   709篇
  2005年   619篇
  2004年   578篇
  2003年   633篇
  2002年   408篇
  2001年   356篇
  2000年   340篇
  1999年   305篇
  1998年   236篇
  1997年   250篇
  1996年   204篇
  1995年   206篇
  1994年   140篇
  1993年   124篇
  1992年   103篇
  1991年   70篇
  1990年   60篇
  1989年   44篇
  1988年   38篇
  1987年   28篇
  1986年   22篇
  1985年   35篇
  1984年   25篇
  1983年   15篇
  1982年   12篇
  1981年   16篇
  1980年   15篇
  1979年   13篇
  1978年   8篇
  1977年   10篇
  1976年   8篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
牛肝菌作为一种著名的野生食用菌,具有较高的食用价值和经济价值。牛肝菌种类繁多,不易区分,建立一种有效、快速、可信的种类鉴别技术,可为牛肝菌提高品质提供一种方法。本研究采集云南不同地区7种野生牛肝菌共计683株,获取样品中红外光谱和紫外光谱,分析不同种类牛肝菌平均光谱图特征。基于多种预处理组合(SNV+SG,2D+MSC+SNV,1D+MSC+SNV+SG,MSC+2D)的单一光谱数据结合两种特征值提取法(PCA,LVs)构建了偏最小二乘法判别分析与随机森林算法并结合数据融合策略对牛肝菌进行种类鉴别,有一定的创新性。结果表明:(1)中红外光谱和紫外光谱的不同种类牛肝菌平均光谱吸收峰差异较小,吸光度具有细微差异。(2)合适的预处理可提高光谱数据信息,偏最小二乘法判别分析和随机森林算法模型的中红外光谱数据和紫外光谱数据最佳预处理组合为2D+MSC+SNV,SNV+SG,2D+MSC+SNV,1D+MSC+SNV+SG。(3)单一光谱模型中,中红外光谱模型优于紫外光谱模型,中红外光谱最佳预处理组合2D+MSC+SNV的偏最小二乘法判别分析模型正确率训练集99.78%,验证集99.12%;随机森林模型正确率训练集93.20%,验证集99%。(4)数据融合策略提高了分类正确率,低级融合的偏最小二乘法判别分析模型训练集和验证集正确率为100%,99.12%。随机森林模型训练集和验证集正确率为92.32%,99.14%。(5)随机森林算法中级数据融合Latent variable(LVs)正确率为训练集92.76%,验证集96.04%;中级数据融合Principal components analysis(CPA)正确率为训练集97.15%,验证集100%。(6)偏最小二乘法判别分析中级数据融合(LVs)正确率为训练集100%,验证集99.56%;中级数据融合(CPA)训练集和验证集正确率均能达到100%。基于偏最小二乘法判别分析和随机森林算法结合数据融合策略对牛肝菌进行种类鉴别,鉴别效果理想。偏最小二乘法判别分析中级数据融合(CPA)可作为一种低成本高效率的牛肝菌种类鉴别技术。  相似文献   
2.
Dehydrogenation of an organic compound is the first and the most fundamental elementary reaction in many organic reactions. In ethanol oxidation reaction (EOR) to form CO2, there are a total of 46 pathways in C2HxO (x=1–6) species leading to the removal of all six hydrogen atoms in five C−H bonds and one O−H bond. To investigate the degree of dehydrogenation in EOR under operando conditions, we performed density function theory (DFT) calculations to study 28 dehydrogenation steps of C2HxO on Ir(100). An activation energy surface was then constructed and compared with that of the C−C bond cleavages to understand the importance of the degree of dehydrogenation in EOR. The results show that there are likely 28 dehydrogenations in EOR under fuel cell temperatures and the last two hydrogens in C2H2O are less likely cleaved. On the other hand, deep dehydrogenation including 45 dehydrogenations can occur under ethanol steam reforming conditions.  相似文献   
3.
Pressure oxidation leaching behavior of chalcopyrite in sulfuric acid solution from 110 °C to 150 °C were investigated by in-situ electrochemical methods. Leaching experiments under saturated vapor pressure conditions were used to simulate the anoxic environment that may be encountered in industrial applications. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the morphology and the chemical status of chalcopyrite surface. Results show that the copper extraction was increased with the increase of leaching temperature. Under the optimal leaching conditions under saturated vapor pressure, the copper and iron extraction are 8.3% and 29.8%, respectively. When the temperature increased from 110 °C to 150 °C, the self-corrosion potential and electrochemical reaction resistance firstly increased and then decreased. In contrast, the resistance of the passive film was always increased with the increase of temperature. The electrochemical study results indicated that the increase in temperature affected the oxidation of chalcopyrite by altering the kinetics of the cathodic reaction and the anodic passivation. Both the self-corrosion current density (icorr) and rate constant were affected by the reduction of Fe(III). The XPS results show that elemental sulfur and H3O(Fe3(SO4)2(OH)6) were the main leaching solid products. The formation of H3O(Fe3(SO4)2(OH)6) not only caused a decrease in cathodic reaction kinetics, but also increased the resistance of mass transfer process. Due to the faster release of iron, copper-rich sulphides were formed, which mixed with the elemental sulfur and/or H3O(Fe3(SO4)2(OH)6) led to coverage of the chalcopyrite surface.  相似文献   
4.
Biocatalytic cascades that involve enzymatic oxidation as one or more key steps are powerful tools to access valuable chemicals with various functionalizations starting from simple substrates, without the isolation of intermediates. This review discusses the recent advances in oxidative cascades, with perspectives given on the current limitations and future developments. The strategies employed to achieve efficient supply of redox cofactors are also highlighted. The examples include cascades that begin with alkene epoxidation, alkane hydroxylation, alcohol oxidation or amine oxidation. These oxidative steps are followed by a variety of enzyme-catalyzed functionalizations, producing a diverse range of high-value products.  相似文献   
5.
As a representative of traditionally fermented Chinese medicine, Massa Medicata Fermentata (MMF) shows the functions of invigorating the spleen and stomach and promoting digestion, which plays an important role in the treatment of gastrointestinal diseases. The fermentation mechanism and the key factors that affect the quality of MMF have not been revealed yet, which has become an urgent issue that limits its clinical application. This article aims to systematically and comprehensively reveal the transformation of physical properties and the dynamic trend of chemical components including substrate components, volatile components, and lactic acid as anaerobic fermentation product during MMF fermentation. Along with obvious hyphae growth observed for MMF, the weight of MMF decreased, and the moisture and temperature increased. Through the quantified 14 components from substrate, ferulic acid increased from 45.53 ± 6.94 to 141.89 ± 78.40 μg/g, while glycosides and phenolic acids declined except caffeic acid. Also, within the 66 volatile components analyzed, alcohols and acids increased, while aldehydes and ketones decreased. Lactic acid was not detected in the fermentation substrate, but an apparent increase in lactic acid content was observed along with the increased fermentation days, resulting in 2.54 ± 0.15 mg/g on day 8. Based on the tested components, the fermentation process of MMF was discriminated into three distinct stages by principal component analysis, and an optimal fermentation time of four days was proposed. The results of this study will be of great significance to clarify the characteristics of fermentation and conduce to improving quality standards of MMF.  相似文献   
6.
Due to the water-insoluble nature of Hg0, its oxidization to Hg2+, which is water-soluble, is a viable approach for its effective removal at coal-fired plants using existing flue gas desulfurization (FGD) unit. In this study, the adsorption and oxidation of elemental mercury on an Mn-doped g-C3N4 material were investigated. The spin-polarized density functional theory method was adapted to optimize the geometry structures and then to determine the corresponding electronic structures, while the CI-NEB method was adopted to search for the stable intermediates during the reaction(s). The analysis of energy and project density of states shows that the Mn-g-C3N4 exhibits an excellent affinity to Hg atoms. It is found that it is feasible for Hg atoms to oxidize on the Mn-g-C3N4 surface via two possible E-R paths, but with relatively high energy barriers. This research provides insights into a viable way for mercury removal using O2 as the oxidizing agent.  相似文献   
7.
8.
5-羟甲基糠醛(HMF)的电催化氧化被认为是合成2,5-呋喃二甲酸(FDCA)最环保、经济和有效的方法之一,它可作为聚呋喃二甲酸乙二醇酯(PEF)的生物基前体。在这项工作中,我们通过低温溶剂热法合成了PtRuAgCoNi高熵合金纳米颗粒,并在不改变颗粒结构和组成的情况下进行了简易的处理以去除表面活性剂。负载在碳载体上的合金纳米催化剂无论是否含有表面活性剂在HMF电催化氧化为FDCA的过程中都表现出比商业Pt/C更好的催化性能。且表面活性剂的去除可以进一步提高其电催化性能,表明高熵合金纳米粒子在电催化和绿色化学中具有广阔的应用前景。  相似文献   
9.
1,3-二羟基丙酮(DHA)是一种重要的化工原料,广泛应用于医药、化妆品及食品等领域.通过催化选择性氧化甘油制备DHA是一条高效、经济的工艺路线,而催化剂的种类及反应方式被证明对DHA的产率有较大影响.因此,结合近些年来相关文献,系统阐述了热、光和电这3种催化反应方式在甘油氧化制取DHA上的研究进展,并重点介绍了热催化路径中所选用的催化剂、相关研究实例及反应机理.最后,对甘油制备DHA的多路径选择性氧化的研究前景进行了展望.  相似文献   
10.
Yinlan lipid regulatory capsule (YL) is a composite traditional Chinese medicine (TCM) new drug to alleviate hyperlipidemia, while its therapeutic mechanism in vivo was not clarified with nontargeted metabolomics investigation. An animal model was established in rats fed a high-fat diet, and their body weights, body mass index (BMI) and blood cholesterol levels were measured. Serum, liver and kidney tissue samples were also extracted for PXR-CYP3A4-ABCB1-FXR signaling pathway research using PCR and UHPLC–MS. The obtained plasma samples were analyzed by UHPLC-Q-TOF-MS metabolomic investigation, which revealed PXR-CYP3A4-related metabolites and changes induced by YL. Finally, the key metabolites were chosen as index components, and their levels in the serum, liver, small intestine and bile were used for simultaneous UHPLC–MS-MS determination. The results indicated that YL was effective in rebalancing blood TG and TC levels (compared to controls). With respect to the PXR-CYP3A4-ABCB1 pathway, as a result of YL’s effect, gene expression or activity of the two targets decreased significantly in both the liver and kidney. The same trend was observed in the serum samples mentioned above. Metabolomics screening and data revealed that 44 metabolites can be regarded as biomarkers related to hyperlipidemia, fatty acids synthesis, and body energy consumption, as well as synthesis, transportation and exertion of cholesterol. YL’s treatment focused on 26 of them, primarily bile acids, indicating that the antihyperlipidemic effect of this drug lies in its inhibitory activity of cholesterol metabolism. Subsequent analysis of those in vivo components revealed that significant increases (compared to the model group) occurred in the blood, liver, small intestine and bile in groups that received medium and high doses of YL (while the low dose was relatively unchanged). Those target components exhibit a close relationship with PXR and/or CYP3A4. The use of YL repressed PXR expression and subsequently decreased CYP3A4 activity. As a result, synthesis of related bile acids increased, while cholesterol levels decreased, consequently leading to the attenuation of hyperlipidemia. This study comprehensively investigated the antihyperlipidemia mechanism of YL based on its repression of PXR-CYP3A4 activity and related metabolite yield, establishing an accurate method for evaluating the therapeutic effect of YL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号