首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14685篇
  免费   1950篇
  国内免费   2394篇
化学   12314篇
晶体学   120篇
力学   338篇
综合类   134篇
数学   90篇
物理学   6033篇
  2024年   7篇
  2023年   170篇
  2022年   350篇
  2021年   471篇
  2020年   611篇
  2019年   506篇
  2018年   449篇
  2017年   587篇
  2016年   709篇
  2015年   667篇
  2014年   862篇
  2013年   1351篇
  2012年   1200篇
  2011年   927篇
  2010年   709篇
  2009年   897篇
  2008年   880篇
  2007年   940篇
  2006年   853篇
  2005年   758篇
  2004年   768篇
  2003年   649篇
  2002年   572篇
  2001年   392篇
  2000年   369篇
  1999年   327篇
  1998年   272篇
  1997年   280篇
  1996年   210篇
  1995年   221篇
  1994年   168篇
  1993年   164篇
  1992年   140篇
  1991年   98篇
  1990年   82篇
  1989年   71篇
  1988年   69篇
  1987年   44篇
  1986年   33篇
  1985年   24篇
  1984年   22篇
  1983年   17篇
  1982年   21篇
  1981年   11篇
  1980年   15篇
  1979年   19篇
  1978年   16篇
  1977年   12篇
  1976年   19篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Thin-film composite of chitosan/nickel phthalocyanine (NiPc) was electrochemically deposited on the fingers of interdigitated gold electrodes, applying chronoamperometric polymerization technique. The presence of crystallized NiPc in the chitosan was confirmed by EDX and FTIR analysis. Acetone, ethanol, and methanol gas-sensing properties of the films prepared at optimum conditions were studied at atmospheric temperature, through differential measurements at an optimized frequency of 10 kHz, using a lock-in amplifier. The conductometric sensor presents the highest sensitivity of 60.2 μS.cm−1(v/v) for methanol and 700 ppm as the limit of detection. For validation, the methanol content of a commercial rubbing alcohol was determined.  相似文献   
2.
These days, an important concern in water contamination is the remaining dyes from various sources (for instance, dye and dye intermediates industries, pulp and paper industries, textile industries, craft bleaching industries, tannery, and pharmaceutical industries, etc.), and a broad range of persistent organic contamination has been entered to the wastewater treatment systems or natural water supplies. Indeed, it is extremely hazardous and toxic to the living organism. Therefore, it is necessary to remove these organic pollutants before releasing them into the environment. Photocatalysis is a quickly growing technology for sewage procedures. For this purpose, Cu2HgI4 nanostructures were prepared via facile, and cost-effective sonochemical method. The effect of varied circumstances, such as various surfactants, sonication power, and sonication time was considered on the crystallinity, structure, shape, and particle size of products. Cu2HgI4 possesses a suitable bandgap (2.2 eV) in the visible area. The photocatalytic performance of the Cu2HgI4 was surveyed for the elimination of various organic dyes under visible radiation and exposed that this compound could degrade and remove methyl orange about 94.2% in an acidic medium after 160 min under visible light. Besides, the result showed that various parameters, including, pH, dye concentration, types of dyes, catalyst dosages, and time of irradiation affected the photocatalytic efficiency.  相似文献   
3.
Three one-dimensional ladder-like coordination polymers consisting of Cd6 metalloring as the building unit, {[Cd4LCl4]·3H2O}n ( 1 ), {[Cd3L(ClO4)(H2O)]ClO4·3H2O}n ( 2 ), and {[Cd6(L)2(NO3)2(CH3OH)(H2O)](NO3)2·2CH3OH·5H2O}n ( 3 ), were solvothermally constructed from a carboxylic functionalized bisazamacrocyclic ligand 4,4′-bis((4,7-bis(2-carboxyethyl)-1,4,7-triazacyclonon-1-yl)methyl)-1,1′-biphenyl (H4L). These compounds dispersed in ethanol show the multiple emissions originating from the monomeric and intramolecularly overlapping biphenyl moieties which could be sensitively quenched by picric acid (PA) and 4-nitrophenol (4-NP) through the effective fluorescence resonance energy transfer process. The differential fluorescent responses of each compound on exposure to PA and 4-NP individually make the convenient ratiometric discrimination of two analytes based on the fluorescent intensity ratio (I320/I360) attainable, and 1 and 2 as ratiometric chemosensors for PA present a broad linear detection range from 4 to 300 μM with detection limits of 0.84 and 0.93 μM, respectively. Furthermore, the blue light emission of 1 under an ultraviolet lamp could be selectively quenched by PA even in the presence of all other interfering nitroaromatic pollutants, which empowers the fast visual detection of PA by naked eye.  相似文献   
4.
以有序介孔碳(OMC)球为离子-电子转换层,制备了固态氯离子选择性电极,构建了基于离子敏感的场效应晶体管(ISFET)的手持式传感系统,用于检测人体血清中的氯离子。优化了OMC前驱体的碳化温度,探究了OMC形貌结构对电极传感性能的影响;电极柔性化制备后考察了其在手持系统中对氯离子的检测效果。结果表明,最优条件下,电极在5.12×10^-4~1.02 mol/L的浓度范围呈现线性响应,响应斜率为60 mV/decade。该柔性电极在手持传感系统中展现出高灵敏度和重现性,可用于人体血清样品中氯离子的检测,其回收率为96.3%~104.9%。  相似文献   
5.
In this paper, I study the effect of a small deviation from the Fermi–Dirac statistics on the quantum ion acoustic waves. For this purpose, a quantum hydrodynamic model is developed based on the Polychronakos statistics, which allows for a smooth interpolation between the Fermi and Bose limits, passing through the case of classical particles. The model includes the effect of pressure as well as quantum diffraction effects through the Bohm potential. The equation of state for electrons obeying fractional statistics is obtained and the effect of fractional statistics on the kinetic energy and the coupling parameter is analyzed. Through the model, the effect of fractional statistics on the quantum ion acoustic waves is highlighted, exploring both linear and weakly nonlinear regimes. It is found that fractional statistics enhance the amplitude and diminish the width of the quantum ion acoustic waves. Furthermore, it is shown that a small deviation from the Fermi–Dirac statistics can modify the type structures, from bright to dark soliton. All known results of fully degenerate and non-degenerate cases are reproduced in the proper limits.  相似文献   
6.
This paper describes the processes used at the Fukushima Daiichi plant, Japan, to purify the waste effluents generated in the cooling of damaged reactors. These include primary cesium removal with the Kurion zeolite system and the SARRY system utilizing silicotitanate to remove radiocesium from water recirculated to reactors for cooling. Another process is the ALPS system to purify the retentates of the reverse osmosis plant to further purify the water from radionuclides after primary cesium separation. In ALPS, a major role is played by the transition metal hexacyanoferrate product CsTreat and sodium titanate SrTreat in the removal of radiocesium and radiostrontium, respectively. The performance of these four exchangers (zeolite, silicotitanate, hexacyanoferrate, and sodium titanate) is critically analyzed with respect to processing capacities and the decontamination factors obtained in the processes. Furthermore, general information on preparation, structure and ion exchange of these ion-exchanger categories is given with additional information on their use in nuclear waste effluent treatment processes. Finally, the importance of selectivity and associated factors are discussed.  相似文献   
7.
Metal oxides have a large storage capacity when employed as anode materials for lithium‐ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO‐Co3O4 nanocomposites embedded in N‐doped carbon (ZnO‐Co3O4@N‐C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N‐doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as‐prepared ZnO‐Co3O4@N‐C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO‐Co3O4@N‐C shows a discharge capacity of 2373 mAh g?1 at the first cycle and exhibits a retention capacity of 1305 mAh g?1 even after 300 cycles at 0.1 A g?1. In addition, a reversible capacity of 948 mAh g?1 is obtained at a current density of 2 A g?1, which delivers an excellent high‐rate cycle ability.  相似文献   
8.
9.
Bidentate ureido-dihomooxacalix[4]arene based supramolecular hosts (n-propyl 1 and tert-butyl 2) were processed into organic nanoparticles via a bottom up approach in which a single step of re-precipitation was employed. These organic nanoparticles were then coupled with gold nanoparticles on the surface, resulting in an organic – inorganic hybrid framework (n-propyl H1 and tert-butyl H2). Photophysical studies of the organic nanoparticles and of the hybrid material were performed. The size and morphology were determined by TEM and DLS analysis. Moreover, the prepared hybrid frameworks were screened against various anions using UV-Visible absorption and fluorescence spectrophotometry. H1 exhibited ratiometric response towards iodide ion in aqueous medium, and colour change of the solution from pink to light blue was observed. This hybrid material selectively and sensitively detected iodide ion with detection limit of 8.3 nM and with almost no interference from other anions. H1 sensor ability was also tested with artificial and real urine samples. H2 showed different responses and no selectivity to any anion.  相似文献   
10.
A EuIII-containing single molecule BCR-Eu as design platform for ratio-metric fluorescent sensor which includes a blue-emitting coumarin dye, a green-emitting BODIPY fluorophore and a EuIII moiety as the origin of red light has been designed and synthesized. The compound BCR shows only green emission with large stoke shift when excited in 400 nm due to good fluorescence resonance energy transfer from coumarin to BODIPY. After embedding EuIII complexes in the molecule, BCR-Eu exhibits dual emission which is equal in magnitude and independent of each other, when excited at the range of 305–365 nm. An emission from Lanthanide complexes as the stable built-in standard fluorescence peak offers a promising opportunity to enhance the precision of bioimaging and also an ideal design platform for future ratio-metric fluorescent sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号