首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19855篇
  免费   1260篇
  国内免费   1034篇
化学   18253篇
晶体学   16篇
力学   605篇
综合类   63篇
数学   326篇
物理学   2886篇
  2024年   11篇
  2023年   266篇
  2022年   413篇
  2021年   377篇
  2020年   660篇
  2019年   761篇
  2018年   569篇
  2017年   740篇
  2016年   844篇
  2015年   732篇
  2014年   813篇
  2013年   1247篇
  2012年   1329篇
  2011年   1246篇
  2010年   1003篇
  2009年   1240篇
  2008年   1093篇
  2007年   1289篇
  2006年   1054篇
  2005年   968篇
  2004年   879篇
  2003年   752篇
  2002年   580篇
  2001年   377篇
  2000年   339篇
  1999年   313篇
  1998年   276篇
  1997年   251篇
  1996年   256篇
  1995年   245篇
  1994年   217篇
  1993年   176篇
  1992年   157篇
  1991年   188篇
  1990年   107篇
  1989年   80篇
  1988年   62篇
  1987年   41篇
  1986年   36篇
  1985年   34篇
  1984年   27篇
  1983年   19篇
  1982年   22篇
  1981年   18篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1976年   3篇
  1973年   3篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Quantification of the composition of binary mixtures in secondary ion mass spectrometry (SIMS) is required in the analyses of technological materials from organic electronics to drug delivery systems. In some instances, it is found that there is a linear dependence between the composition, expressed as a ratio of component volumes, and the secondary ion intensities, expressed as a ratio of intensities of ions from each component. However, this ideal relationship fails in the presence of matrix effects and linearity is observed only over small compositional ranges, particularly in the dilute limits. In this paper, we assess an empirical method, which introduces a power law dependence between the intensity ratio and the volume fraction ratio. A previously published physical model of the organic matrix effect is employed to test the limits of the method and a mixed system of 3,3′-bis(9-carbazolyl) biphenyl and tris(2-phenylpyridinato)iridium (III) is used to demonstrate the method. This paper introduces a two-point calibration, which determines both the exponent in the power law and the sensitivity factor for the conversion of ion intensity ratio into volume fraction ratio. We demonstrate that this provides significantly improved accuracy, compared with a one-point calibration, over a wide compositional range in SIMS quantification and with a weak dependence on matrix effects. Because the method enables the use of clearly identifiable secondary ions for quantitative purposes and mitigates commonly observed matrix effects in organic materials, the two-point calibration method could be of significant benefit to SIMS analysts.  相似文献   
2.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS), when used for the analysis of complex material samples, typically provides data that are complicated and challenging to understand. Therefore, additional data analysis techniques, such as multivariate analysis, are often required to facilitate the interpretation of TOF-SIMS data. In this study, a new method based on the information entropy (Shannon entropy) is proposed as an indicator of the outline characteristics of an unknown sample, such as changes in the material within the sample and mixing conditions. The Shannon entropy values are calculated using the relative intensity of every secondary ion normalized to the total ion count and reflect the diversity of secondary ions in the spectrum. Mixed samples containing two organic electroluminescence materials of different ratios, multilayers of Irganox 1010, and other organic materials were employed to evaluate the utility of Shannon entropy in the analysis of TOF-SIMS data. The findings demonstrate that the Shannon entropy of a spectrum indicates differences in materials and changes in the conditions of a material in a sample without the need for peak identification or the knowledge of specific peaks corresponding to the materials in the sample.  相似文献   
3.
Dynamic single-drop microextraction (SDME) was automatized employing an Arduino-based lab-made Cartesian robot and implemented to determine parabens in wastewater samples in combination with liquid chromatography–tandem mass spectrometry. A dedicated Arduino sketch controls the auto-performance of all the stages of the SDME process, including syringe filling, drop exposition, solvent recycling, and extract collection. Univariate and multivariate experiments investigated the main variables affecting the SDME performance, including robot-dependent and additional operational parameters. Under selected conditions, limit of detections were established at 0.3 µg/L for all the analytes, and the method provided linear responses in the range between 0.6 and 10 µg/L, with adequate reproducibility, measured as intraday relative standard deviations (RSDs) between 5.54% and 17.94%, (n = 6), and inter-days RSDs between 8.97% and 16.49% (n = 9). The robot-assisted technique eased the control of dynamic SDME, making the process more feasible, robust, and reliable so that the developed setup demonstrated to be a competitive strategy for the automated extraction of organic pollutants from water samples.  相似文献   
4.
The analytical requirements for food testing have increased significantly in recent years. On the one hand, because food fraud is becoming an ever-greater challenge worldwide, and on the other hand because food safety is often difficult to monitor due to the far-reaching trade chains. In addition, the expectations of consumers on the quality of food have increased, and they are demanding extensive information. Cutting-edge analytical methods are required to meet these demands. In this context, non-targeted metabolomics strategies using mass and nuclear magnetic resonance spectrometers (mass spectrometry [MS]) have proven to be very suitable. MS-based approaches are of particular importance as they provide a comparatively high analytical coverage of the metabolome. Accordingly, the efficiency to address even challenging issues is high. A variety of hardware developments, which are explained in this review, have contributed to these advances. In addition, the potential of future developments is highlighted, some of which are currently not yet commercially available or only used to a comparatively small extent but are expected to gain in importance in the coming years.  相似文献   
5.
The Bcl-2 family small molecule inhibitor navitoclax is being clinically evaluated to treat multiple cancers including lymphoid malignancies and small cell lung cancer. A sensitive and reliable method was developed to quantitate navitoclax in human plasma using liquid chromatography with tandem mass spectrometry with which to perform detailed pharmacokinetic studies. Sample preparation involved protein precipitation using acetonitrile. Separation of navitoclax and the internal standard, navitoclax-d8, was achieved with a Waters Acquity UPLC BEH C18 column using isocratic flow over a 3 min total analytical run time. A SCIEX 4500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of navitoclax. The assay range was 5–5,000 ng/ml and proved to be accurate (89.5–104.9%) and precise (CV ≤ 11%). Long-term frozen plasma stability for navitoclax at −70°C was at least 43 months. The method was applied for the measurement of total plasma concentration of navitoclax in a patient receiving a 250 mg daily oral dose.  相似文献   
6.
We present a liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 16 endogenous steroids (androgens, estrogens, glucocorticoids and progestogens) in human serum. Samples (250 μl of matrix) were extracted with t-butylmethyl ether prior to LC–MS/MS analysis. The chromatographic separation was achieved on a reversed-phase column using a methanol–water gradient. The HPLC was coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionization source with acquisition in multiple reaction monitoring mode. The method was validated using surrogate matrices and human serum samples. The specificity of the method was confirmed for all of the considered steroids; linearity was also assessed (R2 > 0.99, lack-of-fit test) in the ranges of concentrations investigated. The lower limits of quantification were in the range 10–400 pg/ml depending on the target steroid. Accuracy was in the range 85–115% for all target steroids except for the lower limit of quantitation levels where it was 80–120%. The extraction recovery was always >65%. No significant matrix effects were observed. To test the reliability of the method, the analysis of serum samples collected from 10 healthy subjects (5 M/5F) was performed. The present method can be used to identify the trajectories of deviation from the concentration normality ranges applied to disorders of the gonadal and adrenal axes.  相似文献   
7.
This paper presents the effect of insecticides on the composition of the surface compounds of one of the most harmful insects, Tenebrio molitor, by analysis using GC–MS. As a result of the use of insecticides, the composition of the chemical compounds on the surface of insects changes, depending on the insecticides used. The most numerous groups of the marked compounds were fatty acids, alkanes, esters and sterols. The content of the identified compounds in the larvae increased at both 24 and 48 h after the application of insecticides, in comparison with the control samples. The content of identified compounds in the samples taken from the females increased 24, 48 and 72 h after the application of insecticides in comparison with the control samples. By contrast, in samples prepared from males, the content of identified compounds decreased 24 h after the application of insecticides, compared with the control samples. The highest content of chemical compounds was for fatty acids and alkanes after the use of insecticides. The content of fatty acids after the application of the insecticide with deltamethrin was 62.1 ± 3.3–466.9 ± 5.9 μg/g, and after the application of the insecticide with cyfluthrin was 49.9 ± 1.9–458.3 ± 4.2 μg/g. However, the content of alkanes after the use of deltamethrin was 115.6 ± 4.2–4672.0 ± 32.1 μg/g, and after the use of cyfluthrin was 189.4 ± 3.8–3975.0 ± 10.2 μg/g.  相似文献   
8.
A method to determine 8 polychlorinated biphenyls (PCBs), 23 organochlorine pesticides (OCPs) and 16 polycyclic aromatic hydrocarbons (PAHs) was described using dispersive liquid–liquid microextraction (DLLME) of a small amount of plasma or serum sample and gas chromatography–tandem mass spectrometry (GC–MS/MS). The appropriate selection of the extraction solvent and dispersing solvent contributes to a high extraction yield and a clean extract. To verify the developed method, the interference, linearity of the calibration curve, detection limit, precision and accuracy were evaluated. The calibration curves were linear by 2–3 orders of magnitude with correlation coefficients above 0.997 in all cases. The LODs of PCBs, OCPs and PAHs were measured in the ranges of 0.0006–0.0029, 0.001–0.029 and 0.0002–0.012 ng/mL. The intraday precision achieved by this method was 2.19–10.3% (PCBs), 1.65–14.3% (OCPs) and 0.91–12.8% (PAHs), and the intraday accuracy 1.56–7.37% (PCBs), 2.34–19.6% (OCPs) and 1.49–15.7% (PAHs). The advantage of this method is that the analysis of PCBs, OCPs, and PAHs can be performed in a single chromatographic run, and the low detection limit enables monitoring of target substances in low exposure general public samples, and the analysis procedure is relatively simple and fast.  相似文献   
9.
A precise and accurate liquid chromatography–tandem mass spectrometric (LC–MS/MS) bioanalytical method has been developed and validated for the simultaneous quantification of WCK 4234 and meropenem (MEM) in dog plasma. Protein precipitation using acetonitrile was employed as a sample preparation approach. Cefepime was used as an internal standard. The developed method was selective, sensitive (limit of quantification, 0.075 μg/ml for both drugs), accurate (recovery > 90%), precise (CV < 10%) and linear (r2 ≥ 0.99, concentration range 0.075–120 μg/ml for both analytes). The developed method was successfully applied for the determination of both drugs in plasma to assess the pharmacokinetics in beagle dogs. WCK 4234 + MEM in a 1:1 ratio at 15 + 15 and 30 + 30 mg/kg doses were administered by the intravenous route. The mean plasma concentration and area under the concentration–time curve of WCK 4234 ranged from 38.3 to 77.4 μg/ml and from 47.8 to 77.1 μg h/ml, respectively, and the values for MEM ranged from 52.2 to 115.3 μg/ml and 70.5 to 133.6 μg h/ml respectively. The elimination half-life of WCK 4234 and MEM was around 0.8 h.  相似文献   
10.
Considering the significance of non-Newtonian fluid usage in manufacturing such as molten plastics, polymeric materials, pulps, and so on, significant efforts have been made to investigate the phenomenon of non-Newtonian fluids. In this article the influences of heat and mass transfer on non-Newtonian Walter's B fluid flow over uppermost catalytic surface of a paraboloid is encountered. An elasticity of the fluid layer is considered in the freestream together with heat source/sink and has the tendency to cause heat flow in the fluid saturated domain. The flow problem of two-dimensional Walter's B fluid is represented using Law of conservation of mass, momentum, heat, and concentration along with thermal and solutal chemical reactive boundary conditions. The governing equations are non-linear partial differential equation and are non-dimensionalized by employing stream function and similarity transformation. The final dimensionless equations yielded are coupled non-linear ordinary differential equations. Furthermore, shooting technique along with RK-4th order method is used to get the numerical results. Graphs and tables are modeled by using MATLAB software to check the effects of Walter's B parameter, Chemical reaction parameter and Thickness parameter on temperature, velocity, and concentration profiles. Tabular analysis shows the results of some physical parameters like skin friction coefficient, Nusselt number and Sherwood number due to the variation of Walter's B parameter, thickness parameter and chemical reactive parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号