首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7213篇
  免费   1186篇
  国内免费   1438篇
化学   8169篇
晶体学   230篇
力学   90篇
综合类   51篇
数学   6篇
物理学   1291篇
  2024年   7篇
  2023年   78篇
  2022年   149篇
  2021年   271篇
  2020年   419篇
  2019年   268篇
  2018年   241篇
  2017年   250篇
  2016年   404篇
  2015年   422篇
  2014年   467篇
  2013年   821篇
  2012年   560篇
  2011年   429篇
  2010年   370篇
  2009年   385篇
  2008年   463篇
  2007年   409篇
  2006年   426篇
  2005年   413篇
  2004年   373篇
  2003年   365篇
  2002年   257篇
  2001年   179篇
  2000年   190篇
  1999年   157篇
  1998年   151篇
  1997年   115篇
  1996年   133篇
  1995年   152篇
  1994年   95篇
  1993年   58篇
  1992年   86篇
  1991年   64篇
  1990年   43篇
  1989年   31篇
  1988年   23篇
  1987年   13篇
  1986年   21篇
  1985年   16篇
  1984年   13篇
  1983年   6篇
  1982年   10篇
  1981年   5篇
  1980年   12篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
排序方式: 共有9837条查询结果,搜索用时 250 毫秒
1.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
2.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
3.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
4.
Herein, we report an addition to the toolbox for the monitoring and quantification of the hydrolytic decay of pentose-1-phosphates, which are known to be elusive and difficult to quantify. This communication describes how apparent equilibrium shifts of a nucleoside phosphorolysis reaction can be employed to calculate hydrolytic loss of pentose-1-phosphates based on the measurement of post-hydrolysis equilibrium concentrations of a nucleoside and a nucleobase. To demonstrate this approach, we assessed the stability of the relatively stable ribose-1-phosphate at 98 °C and found half-lives of 1.8–11.7 h depending on the medium pH. This approach can be extended to other sugar phosphates and related reaction systems to quantify the stability of UV-inactive and hard-to-detect reaction products and intermediates.  相似文献   
5.
Dendrite formation is a major obstacle, e.g., capacity loss and short circuit, to the next-generation high-energy-density lithium (Li)-metal batteries. The development of successful Li dendrite mitigation strategies is impeded by an insufficient understanding in Li dendrite growth mechanisms. The Li-plating-induced internal stress in Li-metal and its effects on dendrite growth have been widely studied, but the underlying microcosmic mechanism is elusive. In the present study, the role of the plating-induced stress in dendrite formation is analyzed through first-principles calculations and ab initio molecular dynamic (AIMD) simulations. It is shown that the deposited Li forms a stable atomic nanofilm structure on the copper (Cu) substrate, and the adsorption energy of Li atoms increases from the Li-Cu interface to the deposited Li surface, leading to more aggregated Li atoms at the interface. Compared with the pristine Li-metal, the deposited Li in the early stage becomes compacted and suffers the in-plane compressive stress. Interestingly, there is a giant strain gradient distribution from the Li-Cu interface to the deposited Li surface, making the deposited atoms adjacent to the Cu surface tend to press upwards with perturbation and causing the dendrite growth. This provides an insight into the atomicscale origin of Li dendrite growth, and may be useful for suppressing the Li dendrite in Li-metal-based rechargeable batteries.  相似文献   
6.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
7.
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red–orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.  相似文献   
8.
曹洪玉 《结构化学》2015,34(3):441-446
A new dinuclear iron(Ⅲ) complex has been synthesized and structurally characterized by X-ray crystallography: [FeⅢ2(L)(C6H5COO)(SO4)(CH3OH)2]·CH3CN·CH3OH(1, H3 L = N,N'-bis(salicylidene)-1,3-diamino-2-propanol). Complex 1 belongs to orthorhombic space group Pna21 with a = 11.4400(8), b = 22.9705(2), c = 12.5712(9) , V = 3303.5(4) 3, Z = 4, F(000) = 1576, Dc = 1.531 g·cm–3, Mr = 761.36, μ = 1.007 mm–1, S = 1.014, the final R = 0.0505 and wR = 0.1018. The crystal packing is stabilized by intermolecular O–H···O hydrogen bonds, forming an extended one-dimensional chain structure. The temperature dependence of magnetic susceptibility measurement shows that antiferromagnetic interaction is propagated between the metal centers. Fit as dinuclear arrangement gave parameters of J = 19.7 cm-1, g = 1.89 and R2 = 0.9999.  相似文献   
9.
Polysulfide intermediates (PSs), the liquid-phase species of active materials in lithium–sulfur (Li-S) batteries, connect the electrochemical reactions between insulative solid sulfur and lithium sulfide and are key to full exertion of the high-energy-density Li-S system. Herein, the concept of sulfur container additives is proposed for the direct modification on the PSs species. By reversible storage and release of the sulfur species, the container molecule converts small PSs into large organosulfur species. The prototype di(tri)sulfide-polyethylene glycol sulfur container is highly efficient in the reversible PS transformation to multiply affect electrochemical behaviors of sulfur cathodes in terms of liquid-species clustering, reaction kinetics, and solid deposition. The stability and capacity of Li-S cells was thereby enhanced. The sulfur container is a strategy to directly modify PSs, enlightening the precise regulation on Li-S batteries and multi-phase electrochemical systems.  相似文献   
10.
高相对分子质量8-羟基喹啉锂聚合物的制备和性能   总被引:1,自引:0,他引:1       下载免费PDF全文
高分子电致发光显示器(PLED)是近几年来国际、国内的研究热点,取得了很大的进展,其中高分子化金属配合物是一类很有价值的功能材料。通过甲基丙烯酸甲酯(MMA)、苯乙烯(S)和含有8-羟基喹啉的单体共聚合成模板聚合物,再与氢氧化锂作用,实现了8-羟基喹啉锂配合物的高分子化,获得了一种能够溶解在普通的溶剂中的高相对分子质量的含喹啉锂配合物的发光聚合物,并利用元素分析、1H-NMR、FTIR、UV、PL光谱、DSC、TGA、GPC等方法对其结构和性能作了表征。紫外吸收和光致发光(PL)光谱说明合成共聚物的发光来自于Liq基团,引入的可聚合的链段以及共聚物中的甲基丙烯酸甲酯或苯乙烯链段,并没有影响发光波长的改变。亲核溶剂改变8-羟基喹啉金属配合物分子结构,使共聚物光谱明显红移20nm左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号