首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   10篇
  国内免费   84篇
化学   389篇
晶体学   1篇
综合类   5篇
物理学   10篇
  2023年   5篇
  2022年   2篇
  2021年   13篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   3篇
  2016年   10篇
  2015年   7篇
  2014年   15篇
  2013年   29篇
  2012年   13篇
  2011年   20篇
  2010年   17篇
  2009年   8篇
  2008年   26篇
  2007年   19篇
  2006年   21篇
  2005年   20篇
  2004年   24篇
  2003年   35篇
  2002年   15篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   6篇
  1997年   12篇
  1996年   6篇
  1995年   9篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有405条查询结果,搜索用时 109 毫秒
1.
A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase‐supported metal–organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors.  相似文献   
2.
Lipases and esterases are important catalysts with wide varieties of industrial applications. Although many methods have been established for detecting their activities, a simple and sensitive approach for picogram detection of lipolytic enzyme quantity is still highly desirable. Here we report a lipase detection assay which is 1000-fold more sensitive than previously reported methods. Our assay enables the detection of as low as 5 pg and 180 pg of lipolytic activity by direct spotting and zymography, respectively. Furthermore, we demonstrated that the detection sensitivity was adjustable by varying the buffering capacity, which allows for screening of both high and low abundance lipolytic enzymes. Coupled with liquid chromatography-mass spectrometry, our method provides a useful tool for sensitive detection and identification of lipolytic enzymes.  相似文献   
3.
金属有机骨架(MOF)材料由于其孔隙率高、比表面积大以及具有发达的内联通孔道结构等优点,可以作为优良的生物分子固定化载体。通过表面活性自组装策略制备了铈基介孔MOF(Ce-MOF-F),表征结果表明,该材料有大的比表面积和呈辐射状的介孔孔道结构。以其为载体、南极假丝酵母脂肪酶B(CALB)为模型酶,通过物理吸附法制备了生物催化剂CALB@Ce-MOF-F,对该固定化酶的酶载量和催化性能进行了研究。在优化条件下,CALB的负载量为162.0mg/g载体,水解活性为899.1U/g蛋白。与游离CALB相比,CALB@Ce-MOF-F表现出对高温、酸碱和有机溶剂等有更强的耐受性;将Ce-MOF-F用于多种酶的固定化,研究其作为载体的普适性,结果表明,介孔Ce-MOF-F对洋葱伯克氏菌脂肪酶(BCL)和漆酶有良好的固定效果,可以作为良好载体,并能对酶起到较好的保护作用。  相似文献   
4.
The performance of the previously optimized magnetic cross-linked enzyme aggregate of Eversa (Eversa-mCLEA) in the enzymatic synthesis of biolubricants by transesterification of waste cooking oil (WCO) with different alcohols has been evaluated. Eversa-mCLEA showed good activities using these alcohols, reaching a transesterification activity with isoamyl alcohol around 10-fold higher than with methanol. Yields of isoamyl fatty acid ester synthesis were similar using WCO or refined oil, confirming that this biocatalyst could be utilized to transform this residue into a valuable product. The effects of WCO/isoamyl alcohol molar ratio and enzyme load on the synthesis of biolubricant were also investigated. A maximum yield of around 90 wt.% was reached after 72 h of reaction using an enzyme load of 12 esterification units/g oil and a WCO/alcohol molar ratio of 1:6 in a solvent-free system. At the same conditions, the liquid Eversa yielded a maximum ester yield of only 34%. This study demonstrated the great changes in the enzyme properties that can be derived from a proper immobilization system. Moreover, it also shows the potential of WCO as a feedstock for the production of isoamyl fatty acid esters, which are potential candidates as biolubricants.  相似文献   
5.
Glycolipids are non-ionic surfactants occurring in numerous products of daily life. Due to their surface-activity, emulsifying properties, and foaming abilities, they can be applied in food, cosmetics, and pharmaceuticals. Enzymatic synthesis of glycolipids based on carbohydrates and free fatty acids or esters is often catalyzed using certain acyltransferases in reaction media of low water activity, e.g., organic solvents or notably Deep Eutectic Systems (DESs). Existing reports describing integrated processes for glycolipid production from renewables use many reaction steps, therefore this study aims at simplifying the procedure. By using microwave dielectric heating, DESs preparation was first accelerated considerably. A comparative study revealed a preparation time on average 16-fold faster than the conventional heating method in an incubator. Furthermore, lipids from robust oleaginous yeast biomass were successfully extracted up to 70% without using the pre-treatment method for cell disruption, limiting logically the energy input necessary for such process. Acidified DESs consisting of either xylitol or sorbitol and choline chloride mediated the one-pot process, allowing subsequent conversion of the lipids into mono-acylated palmitate, oleate, linoleate, and stearate sugar alcohol esters. Thus, we show strong evidence that addition of immobilized Candida antarctica Lipase B (Novozym 435®), in acidified DES mixture, enables a simplified and fast glycolipid synthesis using directly oleaginous yeast biomass.  相似文献   
6.
Though it is standard practice to test the stability of analytes in the matrix for routine bioanalytical method, stability evaluation is always impractical and skipped in untargeted lipidomic and metabolomic analysis because analytes in these studies are enormous, diverse and sometimes unknown. Lipidome represents a major class of plasma metabolome and shows great potential to be diagnostic and prognostic biomarkers. However, lipidome also faces stability problems because plasma contains kinds of lipid degradation enzyme. Here, using liquid chromatography time of flight mass spectrometry based lipidomic methodology, plasma levels of various lipids including triglyceride (TG), diglyceride (DG), free fatty acid (FFA), phosphatidylethanolamine (PE) phosphatidylcholine (PC), lyso-phosphatidylcholine (LPC), lyso-phosphatidylethanolamine (LPE), and sphingomyelin (SM) were dynamically determined within 4 h at ambient temperature. In mouse and rat plasma, the levels of most TG, DG, PC and PE species significantly decreased with respect to time, whereas those of LPC, LPE and FFA significantly increased with respect to time. However, such changes did not occur in human plasma, thus indicating hepatic lipase and esterase might involve in the species-specified degradation of lipid classes in plasma. Phenylmethanesulfonyl fluoride (PMSF) pretreatment prevented such lipidome instability in mouse plasma. The results suggested the instability of plasma lipidome should be highly concerned, and the enhancement of ex vivo stability of plasma lipidome could enable more reliable clinical translation of lipidomic data for biomarker discovery.  相似文献   
7.
Organophosphate pesticides (OPs) have been intensively used as insecticides in agriculture; after entering the aquatic environment, they may affect a wide range of organisms. A conductometric enzymatic biosensor based on lipase extracted from Candida rugosa (CRL) has therefore been developed for the direct and rapid quantitative detection of organophosphate pesticides: diazinon, methyl parathion and methyl paraoxon in water. The biosensor signal and response time were obtained under optimum conditions, the enzyme being immobilised in the presence of gold nanoparticles. Under these conditions, the enzymatic biosensor was able to measure concentrations as low as 60 µg/L of diazinon, 26 µg/L of methyl parathion and 25 µg/L of methyl paraoxon very rapidly (response time: 3 min). Moreover, this CRL biosensor was not sensitive to interferences such as carbamates. It presented good storage stability for 21 days when kept at 4°C and it was successfully applied to real samples.  相似文献   
8.
A series of Grubbs‐type catalysts that contain lipase‐inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently bound to the active amino acid residue of the enzyme host in an orthogonal orientation. Differences in reactivity as well as accessibility of the active site by the functionalized inhibitor became evident through variation of the anchoring motif and substituents on the Nheterocyclic carbene ligand. Such observations led to the design of a hybrid that is active in the ring‐closing metathesis and the cross‐metathesis of N,N‐diallyl‐p‐toluenesulfonamide and allylbenzene, respectively, the latter being the first example of its kind in the field of artificial metalloenzymes.  相似文献   
9.
An efficient biocatalytic process has been developed to obtain optically pure (1S,4R)-N-(benzylcarbamoyl)- 4-aminocyclopent-2-en-1-ol which can be used as the key intermediate of ticagrelor. In this research, several N-(benzylcarbamoyl)-4-aminocyclopent-2-en-1-ol derivatives have been investigated in which Candida antarctica lipase B (CALB) was used to catalyze the asymmetric hydrolysis reaction. As expected, some of these substrates successfully gave (1S,4R)-N-(benzylcarbamoyl)-4-aminocyclopent- 2-en-1-ol in >98% enantiomeric excess (ee) with conversion yields up to 45%.  相似文献   
10.
In this paper, a biocatalytic route is described wherein PPL, lipase from porcine pancreas, in conjunction with water on reaction with different thiophenols and styrene oxides undergo thiolysis with C-S bond formation without the use of any metal catalysts, oxidants, bases, additives or organic solvents towards formation of β-hydroxysulfides in good to excellent yields with high regioselectivity at room temperature. Furthermore, PPL also facilitates thiophenols to undergo hydrothiolation with styrenes or phenylacetylenes in sole water and thus forming linear thioethers or vinylsulfides respectively via C–S bond formation. In addition to the straightforward and atom-efficient protocol, a gram-scale synthesis of β-hydroxysulfide and recyclability for three consecutive cycles without decrease in efficiency of PPL make our biocatalytic protocol for constructing C–S bond highly valuable from both environmental and economic viewpoints than traditional chemical practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号