首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3826篇
  免费   771篇
  国内免费   397篇
化学   3685篇
晶体学   65篇
力学   69篇
综合类   38篇
数学   77篇
物理学   1060篇
  2024年   3篇
  2023年   80篇
  2022年   142篇
  2021年   243篇
  2020年   315篇
  2019年   237篇
  2018年   193篇
  2017年   245篇
  2016年   306篇
  2015年   283篇
  2014年   347篇
  2013年   387篇
  2012年   355篇
  2011年   330篇
  2010年   209篇
  2009年   255篇
  2008年   182篇
  2007年   150篇
  2006年   129篇
  2005年   112篇
  2004年   86篇
  2003年   55篇
  2002年   45篇
  2001年   32篇
  2000年   40篇
  1999年   16篇
  1998年   18篇
  1997年   24篇
  1996年   24篇
  1995年   12篇
  1994年   16篇
  1993年   20篇
  1992年   11篇
  1991年   14篇
  1990年   10篇
  1989年   6篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   16篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有4994条查询结果,搜索用时 15 毫秒
1.
Continuous administration of most chemotherapeutic drugs can induce different types of side effects. There has been growing interest in exploring an alternative approach to synthesizing compounds that are most effective and have fewer side effects. We synthesized 29H,31H-Phthalocyanine, and Chloro (29H,31H- phthalocyaninato) aluminum at low temperatures using lithium in the present study with diisopropylamide as the nucleophile. The physical characteristics of 29H,31H-Phthalocyanine, and Chloro (29H,31H- phthalocyaninato) aluminum were confirmed by FT-IR method, XRD, SEM, and the impact of these compounds on human colorectal carcinoma (HCT-116) and human cervical cells (HeLa) was examined. Treatment with 29H,31H-Phthalocyanine significantly decreased cancer cell growth and proliferation, as determined by MTT and DAPI staining analysis. In contrast, Chloro (29H,31H- phthalocyaninato) aluminum treatment did not show any inhibitory action on colon or cervical cancer cells. We also calculated the inhibitory concentration (IC50) of 29H,31H-Phthalocyanine, which was 30 µg/ml (HCT-116) and 33 µg/ml (HeLa cells). The antibacterial effectiveness of 29H,31H-Phthalocyanine, and chloro (29H,31H- phthalocyaninato) aluminum was studied using Enterococcus faecalis (E. faecalis). The CFU (colony frequency unit) assay confirmed significant activity against the test bacterium after treatment with 29H,31H-Phthalocyanine. However, no activity was seen upon treatment with chloro (29H,31H- phthalocyaninato) aluminum against E. faecalis.  相似文献   
2.
以氧化石墨烯(GO)为原料, 利用温和方法制备了3种不同还原程度的部分还原氧化石墨烯pRGO1, pRGO2和pRGO3(pRGO1—3); 利用傅里叶变换红外光谱(FTIR)、 拉曼光谱(Raman)、 X 射线光电子能谱(XPS)、 紫外-可见光谱(UV-Vis)、 透射电子显微镜(TEM)和 EDS能谱对其结构和形貌进行了表征. 细胞实验结果表明, 无激光照射下pRGO1—3本身的细胞毒性较低; 近红外(NIR)激光照射下pRGO1—3通过光热和光毒性双重作用杀伤肿瘤细胞. 实验结果显示了pRGO 在肿瘤光热疗法和光动力疗法领域的应用潜力.  相似文献   
3.
《Mendeleev Communications》2022,32(4):523-526
Five new dyes with D–π–A structure bearing 5-(methylene)-rhodanine-3-acetic acid as an acceptor-anchoring part and thieno[3,2-b]indole or benzo[g]thieno[3,2-b]indole as an electron-donating part were synthesized and applied as photosensitizers for dye-sensitized solar cells (DSSCs). In addition, thermal stability, optical and electrochemical properties of these dyes were investigated. The highest PCE value of 1.09% (Jsc = 3.01 mA cm–2, Voc = 0.53 V, FF = 0.69) was achieved for DSSC based on benzo[g]thieno[3,2-b]indole dye under AM 1.5G irradiation.  相似文献   
4.
Great efforts have been conducted to develop high temperature proton exchange membrane fuel cell (HT-PEMFC) due to its features of enhanced electrocatalyst reactivity, simplified hydrothermal management system and high CO tolerance of catalysts, and remarkable progress has been achieved. However, the easy leaching of phosphoric acid (PA) from the membranes during operation limits its commercial scale-up in complicated environments. This concept here mainly focuses on the recent developments for mitigation of PA loss in PEMs. The probable mechanisms of PA loss are proposed. The approaches to improve PA retention for example via introduction of phosphonic acid by covalent bond, using ion-pairs interaction and siphoning effect, and blending with inorganic nanoparticles are described in detail. Among these strategies, the siphoning effect from the intrinsic microporous PEMs is the most efficient and enables the cell to operate flexibly within a broad temperature range. Therefore, this concept may provide new ideas for the scientists to retain PA, to improve the cell performance and expand the potential applications of PA doped PEMs at elevated humidity and wide temperature range.  相似文献   
5.
There would be a major effect on the cartilage regeneration characteristics of ceramic material in a substrate implant requiring biologically active biomaterials and the reinforcement phase. At this moment, we produced collagen-hyaluronic acid @ hydroxyapatite-halloysite nanotube-single walled carbon nanotube composites, which is a successful technique for making a scaffold with a superior counter for cartilage property. FTIR, XRD, and SEM-EDAX were used to perform morphological and structural studies. The prepared composite's surface feature was investigated and discovered by HRTEM-SAED analysis, and it observed porous nature. The simulated body fluids (SBF) assessment of the materials was noticed their bioactivity and chondrocytes to determine their biocompatibility. Hybrid composite displayed promise for cartilage tissue engineering despite mesenchymal stem cells compatibility effect and magnificently demonstrated an antibacterial effect without antibiotics. The live/dead cells analysis shows that the composite can significantly improve mesenchymal stem cells, and the composite has the potential ability for cartilage regeneration. The above characteristics make the material quite interesting and important in the area for regenerative medicinal uses.  相似文献   
6.
In this study, vanadium nanoparticles (VNPs) were green synthesized using Foeniculum vulgare extract. VNPs were characterized using chemical analysis techniques including FT-IR, XRD, FE-SEM, TEM and EDS. The microscopy techniques revealed a spherical morphology for the particles with size less than 50 nm. According to XRD data V2O5 was confirmed for VNPs. Maybe significant anti-human acute leukemia potentials of the synthesized nanoparticles against common human acute leukemia cell lines are linked to their antioxidant activities. MTT assay was used on common acute leukemia cell lines i.e., 32D-FLT3-ITD, MOLT-3 and Jurkat, Clone E6-1 to survey the cytotoxicity and anti-acute leukemia effects of the synthesized nanoparticles. The synthesized nanoparticles had very low cell viability and high anti-acute leukemia activities dose-dependently against 32D-FLT3-ITD, MOLT-3 and Jurkat, Clone E6-1 cell lines without cytotoxicity on the normal cell line (HUVEC). To determine the antioxidant properties of the synthesized nanoparticles, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. The IC50 of VNPs were 25, 33 and 26 µg/mL against 32D-FLT3-ITD, MOLT-3 and Jurkat, Clone E6-1 cell lines, respectively. The synthesized nanoparticles inhibited half of the DPPH molecules in the concentration of 28 µg/mL.  相似文献   
7.
We are reporting in the present study that molecules extracted from olive pomace prevent cell death induced by Ca2+-overloading in different cell types. Exposure of cells to these molecules counteracts the Ca2+-induced cell damages by reducing the activation of the Ca2+-dependent protease calpain, acting possibly through the modification of the permeability to Ca2+ of the plasma membrane. The purification step by RP-HPLC suggests that effective compound(s), differing from the main biophenols known to be present in the olive pomace extract, could be responsible for this effect. Our observations suggest that bioactive molecules present in the olive pomace could be potential candidates for therapeutic applications in pathologies characterised by alterations of intracellular Ca2+ homeostasis.  相似文献   
8.
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future. Here, the strategy that uses chemical structure modification to optimize the photoelectric properties is reported. A new narrow bandgap (1.30 eV) chlorinated non-fullerene electron acceptor (Y15), based on benzo[d][1,2,3] triazole with two 3-undecyl-thieno[2′,3′:4,5] thieno[3,2-b] pyrrole fused -7-heterocyclic ring, with absorption edge extending to the near-infrared (NIR) region, namely A-DA'D-A type structure, is designed and synthesized. Its electrochemical and optoelectronic properties are systematically investigated. Benefitting from its NIR light harvesting, the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency (PCE) of 14.13%, when blending with a wide bandgap polymer donor PM6. Our results show that the A-DA'D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells (PSCs).  相似文献   
9.
《中国化学快报》2020,31(7):1782-1786
Anodic electrocatalyst plays the core role in direct alcohol fuel cells (DAFCs), while traditional Pt-catalysts suffer from limited catalytic activity, high over potential and severe CO poisoning. Herein, by selectively depositing Rh atoms on the defective-sites of Pt nanowires (NWs), we developed a new Pt@Rh NW electrocatalyst that exhibited enhanced electrocatalytic performance for both methanol oxidation (MOR) and ethanol oxidation (EOR). Both cyclic voltammetry (CV) and in-situ infrared spectroscopy revealed that the presence of Rh atoms suppressed the generation of poisonous intermediates and completely oxidized alcohols molecule into CO2. Atomic resolusion spherical aberration corrected high-angle annular dark field scanning transmission electron microscopy (CS-HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mapping analysis revealed that Rh atoms were primarily deposited on the defective sites of Pt NWs. Meanwhile, the presence of Rh atoms also modified the electronic state of Pt atoms and therefore lowered the onset potential for alcohols oxidation potential. This work gives the first clear clue on the role of the defective sites of Pt nanocatalyst poisoning, and propose that selectively blocking these sites with trace amount of Rh is an effective strategy in designing advantageous electrocatalysts.  相似文献   
10.
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state‐of‐the‐art carbon‐based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl‐chain regulated quantum dots as hole‐conductors to reduce charge recombination. By precisely controlling alkyl‐chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re‐absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号