首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   28篇
  国内免费   21篇
化学   252篇
物理学   6篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   10篇
  2017年   9篇
  2016年   6篇
  2015年   13篇
  2014年   15篇
  2013年   28篇
  2012年   18篇
  2011年   21篇
  2010年   8篇
  2009年   22篇
  2008年   11篇
  2007年   10篇
  2006年   15篇
  2005年   13篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
1.
Metal‐based catalysts and initiators have played a pivotal role in the ring‐opening polymerization (ROP) of cyclic esters, thanks to their high activity and remarkable ability to control precisely the architectures of the resulting polyesters in terms of molar mass, dispersity, microstructure, or tacticity. Today, after two decades of extensive research, the field is slowly reaching maturity. However, several challenges remain, while original concepts have emerged around new types or new applications of catalysis. This Review is not intended to comprehensively cover all of these aspects. Rather, it provides a personal overview of the very recent progress achieved in some selected, important aspects of ROP catalysis—stereocontrol and switchable catalysis. Hence, the first part addresses the development of new metal‐based catalysts for the isoselective ROP of racemic lactide towards stereoblock copolymers, and the use of syndioselective ROP metal catalysts to control the monomer sequence in copolymers. A second part covers the development of ROP catalysts—primarily metal‐based catalysts, but also organocatalysts—that can be externally regulated by the use of chemical or photo stimuli to switch them between two states with different catalytic abilities. Current challenges and opportunities are highlighted.  相似文献   
2.
3.
A library of rare-earth metal derivatives supported by an aminophenoxy ligand was prepared and their catalytic performance in lactide polymerization was investigated. It was found that the synthetic strategy had a profound effect on the formation of aminophenoxy rare-earth metal complexes. Amine elimination between Ln[N(SiMe3)2]3(μ-Cl)Li(THF)3 (Ln = Yb, Y) and 1 equiv. of the aminophenol [HONH] ([HONH] = ο-OCH3-C6H4NHCH2(3,5-tBu2-C6H2-2-OH)) in toluene gave the unexpected heterobimetallic bis(aminophenoxy) rare-earth metal complexes [ON]2LnLi(THF)2 (Ln = Yb ( 1 ), Y ( 2 )). When the reactions were carried out in THF and TMEDA, amine elimination produced the aminophenoxy rare-earth metal amide complexes {[ON]LnN(SiMe3)2}2 (Ln = Yb ( 5 ), Y ( 6 )) in ca 85% isolated yields. Complexes 5 and 6 could also be obtained from salt metathesis reaction of {[ON]LnCl(THF)}2 (Ln = Yb ( 3 ), Y ( 4 )) with NaN(SiMe3)2 in a 1:2 molar ratio. In addition, treatment of complexes 3 and 4 with NaOAr (Ar = &bond;C6H4-4-tBu) and (SiMe3)2NC(NPri)2Na in 1:4 and 1:2 molar ratios provided the corresponding aminophenoxy rare-earth metal derivatives {[ON](μ-OAr)Ln(μ-OAr)Na(THF)2}2 (Ln = Yb ( 7 ), Y ( 8 )) and {[ON]Ln[(iPrN)2CN(SiMe3)2]}2 (Ln = Yb ( 9 ), Y ( 10 )), respectively. These complexes were fully characterized, and their molecular structures were determined using single-crystal X-ray diffraction. Polymerization experiments showed that complexes 1 , 2 , 5 , 6 , 9 and 10 were highly active for the ring-opening polymerization of l -lactide in toluene, and complex 1 promoted l -lactide polymerization in a controlled fashion. The polymerization of rac-lactide initiated by the neutral aminophenoxy rare-earth metal complexes 5 , 6 , 9 and 10 in THF afforded heterotactic polymers.  相似文献   
4.
TPPAlCl-PPN+Cl binary catalyst (where TPPAlCl is 5,10,15,20-tetraphenylporphyrin aluminum chloride, PPN+Cl is bis[triphenylphosphine] iminium chloride, the molar ratio of TPPAlCl to PPN+Cl is 1 to 0.5) can initiate the effective one-pot/one-step ternary copolymerization of CO2, lactide and 4-vinyl-1-cyclohexene-1,2-epoxide, and the quaternary copolymerization of CO2, propylene oxide, lactide, 4-vinyl-1-cyclohexene-1,2-epoxide, to form multiblock poly(carbonate-co-lactide) products with pendant vinyl group. The ternary copolymerization product composes of polylactide (PLA) block and poy(vinylcyclohexylene carbonate) (PVCHC) block, and the quaternary copolymerization product composes of poy(propylene carbonate) (PPC) block, PLA block and PVCHC block, which are verified by 1H NMR, 13C NMR, 1H-1H cosy, hetero-nuclear multiple bond correlation, DTG, and Gel permeation chromatography analysis. The functionality and glass-transition temperature of the products can be easily adjusted by the copolymerization variables, such as the molar ratio of comonomers, copolymerization temperature, pressure of CO2, the concentration of the catalyst.  相似文献   
5.
6.
李杲  陈学思 《高分子科学》2015,33(12):1713-1720
In this study, the poly(L-lactide)/poly(D-lactide)(PLLA/PDLA) blends with different optical purities of PLLA and various molecular weights of PDLA are prepared by solution mixing, and the stereocomplex formation and phase separation behaviors of these blends are investigated. Results reveal that optical purity and molecular weight do not vary the crystal structure of PLA stereocomplex(sc) and homochiral crystallites(hc). As the optical purity increasing in the blends, the melting temperature of sc(Tsc) and the content of sc(ΔHsc) increased, while the melting temperature of hc(Thm) hardly changes, although the content of hc(ΔHhm) decreased gradually. The Tsc and ΔHsc are also enhanced as the molecular weight of PDLA reduces, and the ΔHhm reduces rapidly even though the Thm does not vary apparently. With lower optical purities of PLLA and higher molecular weights of PDLA, three types of crystals form in the blends, i.e., PLA sc, PLLA hc and PDLA hc. As molecular weight decreases and optical purity enhances, the crystal phase decreases to two(sc and PDLA hc), and one(sc) finally. This investigation indicates that the phase separation behavior between PLLA and PDLA in the PLLA/PDLA blends not only depends on molecular weights, but also relies on the optical purities of polymers.  相似文献   
7.
Diiminopyrrolide copper alkoxide complexes, LCuOR (OR1=N,N‐dimethylamino ethoxide, OR2=2‐pyridyl methoxide), are active for the polymerization of raclactide at ambient temperature in benzene to yield polymers with Mw/Mn=1.0–1.2. X‐ray diffraction studies showed bridged dinuclear complexes in the solid state for both complexes. While LCuOR1 provided only atactic polylactide, LCuOR2 produced partially isotactic polylactide (Pm=0.7). The difference in stereocontrol is attributed to a dinuclear active species for LCuOR2 in contrast to a mononuclear species for LCuOR1.  相似文献   
8.
Microwave (MW)‐assisted ring‐opening polymerization (ROP) provides a rapid and straightforward method for engineering a wide array of well‐defined poly(3‐hydroxyalkanoate)‐b‐poly(D,L ‐lactide) (PHA‐b‐PLA) diblock copolymers. On MW irradiation, the bulk ROP of D,L ‐lactide (LA) could be efficiently triggered by a series of monohydroxylated PHA‐based macroinitiators previously produced via acid‐catalyzed methanolysis of corresponding native PHAs, thus affording diblock copolyesters with tunable compositions. The dependence of LA polymerization on temperature, macroinitiator structure, irradiation time, and [LA]0/[PHA]0 molar ratio was carefully investigated. It turned out that initiator efficiency values close to 1 associated with conversions ranging from 50 to 85% were obtained only after 5 min at 115 °C. A kinetic investigation of the MW‐assisted ROP of LA gave evidence of its “living”/controlled character under the experimental conditions selected. Structural analyses and thermal properties of biodegradable diblock copolyesters were also performed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
9.
10.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号