首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10413篇
  免费   1498篇
  国内免费   1528篇
化学   10202篇
晶体学   300篇
力学   84篇
综合类   66篇
数学   545篇
物理学   2242篇
  2024年   10篇
  2023年   151篇
  2022年   229篇
  2021年   413篇
  2020年   608篇
  2019年   438篇
  2018年   390篇
  2017年   362篇
  2016年   547篇
  2015年   557篇
  2014年   616篇
  2013年   1083篇
  2012年   626篇
  2011年   600篇
  2010年   531篇
  2009年   599篇
  2008年   641篇
  2007年   747篇
  2006年   643篇
  2005年   594篇
  2004年   505篇
  2003年   448篇
  2002年   287篇
  2001年   227篇
  2000年   233篇
  1999年   169篇
  1998年   155篇
  1997年   154篇
  1996年   161篇
  1995年   141篇
  1994年   90篇
  1993年   77篇
  1992年   64篇
  1991年   38篇
  1990年   31篇
  1989年   29篇
  1988年   38篇
  1987年   30篇
  1986年   29篇
  1985年   35篇
  1984年   20篇
  1983年   9篇
  1982年   17篇
  1981年   9篇
  1980年   10篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Laser ablation in liquids is growing in popularity for various applications including nanoparticle production, breakdown spectroscopy, and surface functionalization. When laser pulse ablates the solid target submerged in liquid, a cavitation bubble develops. In case of “finite” geometries of ablated solids, liquid dynamical phenomena can occur inside the bubble when the bubble overflows the surface edge. To observe this dynamics, we use diffuse illumination of a flashlamp in combination with a high-speed videography by exposure times down to 250 ns. The developed theoretical modelling and its comparison with the experimental observations clearly prove that this approach widens the observable area inside the bubble. We thereby use it to study the dynamics of laser-induced cavitation bubble during its expansion over a sharp-edge (“cliff-like” 90°) geometry submerged in water, ethanol, and polyethylene glycol 300. The samples are 17 mm wide stainless steel plates with thickness in the range of 0.025–2 mm. Bubbles are induced on the samples by 1064-nm laser pulses with pulse durations of 7–60 ns and pulse energies of 10–55 mJ. We observe formation of a fixed-type secondary cavity behind the edge where low-pressure area develops due to bubble-driven flow of the liquid. This occurs when the velocity of liquid overflow exceeds ~20 m s−1. A re-entrant liquid injection with up to ~40 m s−1 velocity may occur inside the bubble when the bubble overflows the edge of the sample. Formation and characteristics of the jet evidently depend on the relation between the breakdown-edge offset and the bubble energy, as well as the properties of the surrounding liquid. Higher viscosity of the liquid prevents the generation of the jet.  相似文献   
2.
Hydrodynamic cavitation experiments in microfluidic systems have been performed with an aqueous solution of luminol as the working fluid. In order to identify where and how much reactive radical species are formed by the violent bubble collapse, the resulting chemiluminescent oxidation reaction of luminol was scrutinized downstream of a constriction in the microchannel. An original method was developed in order to map the intensity of chemiluminescence emitted from the micro-flow, allowing us to localize the region where radicals are produced. Time averaged void fraction measurements performed by laser induced fluorescence experiments were also used to determine the cavitation cloud position. The combination void fraction and chemiluminescence two-dimensional mapping demonstrated that the maximum chemiluminescent intensity area was found just downstream of the cavitation clouds. Furthermore, the radical yield can be obtained with our single photon counting technique. The maximum radical production rates of 1.2*107 OH/s and radical production per processed liquid volume of 2.15*1010 HO/l were observed. The proposed technique allows for two-dimensional characterisation of radical production in the microfluidic flow and could be a quick, non-intrusive way to optimise hydrodynamic cavitation reactor design and operating parameters, leading to enhancements in wastewater treatments and other process intensifications.  相似文献   
3.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
4.
There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.  相似文献   
5.
6.
ωB97XD/aug-cc-pVTZ calculations were performed for complexes of dihydrogen, cyclopropane, cyclobutane and cyclopentane, with simple proton donating species such as hydrogen fluoride, hydrogen chloride, water, hydrogen cyanide and acetylene. Numerous dependencies between geometrical, energetic and topological parameters of complexes considered were found, since various theoretical approaches were applied: Quantum Theory of ‘Atoms in Molecules’ (QTAIM), Natural Bond Orbital (NBO) method and energy decomposition analysis (EDA). It was confirmed that complexes of dihydrogen and cyclopropane are linked through the A−H…σ interactions that may be classified as hydrogen bonds. In the case of complexes of cyclobutane such hydrogen bonds are rather weak. Other type and also weak A−H…C hydrogen bonds are formed for complexes with cyclopentane.  相似文献   
7.
The molecular mechanism of the adhesion between silica surface and epoxy resin under atmospheric conditions is investigated by periodic density-functional-theory (DFT) calculations. Slab models of the adhesion interface were built by integrating a fragment of epoxy resin and hydroxylated (0 0 1) surface of α-cristobalite in the presence of adsorbed water molecules. Effects of adsorbed water on the adhesion interaction are evaluated on the basis of geometry-optimized structures, adhesion energies, and forces. Calculated results demonstrate that adsorbed water molecules significantly reduce both the adhesion energies and forces of the silica surface–epoxy resin interface. The reduction of adhesion properties can be associated with structural deformation of water molecules confined in the tight space between the adhesive and adherend as well as structural flexibility of the hydrogen-bonding network in the interfacial region during detachment of the epoxy resin from the hydrophilic silica surface. © 2018 Wiley Periodicals, Inc.  相似文献   
8.
A synergistic catalytic method combining photoredox catalysis, hydrogen‐atom transfer, and proton‐reduction catalysis for the dehydrogenative silylation of alkenes was developed. With this approach, a highly concise route to substituted allylsilanes has been achieved under very mild reaction conditions without using oxidants. This transformation features good to excellent yields, operational simplicity, and high atom economy. Based on control experiments, a possible reaction mechanism is proposed.  相似文献   
9.
Mo对脱合金制备的Ni-Mo电极骨架结构与析氢性能的影响   总被引:1,自引:0,他引:1  
采用快速凝固结合脱合金化方法制备了不同Mo含量的纳米多孔Ni-Mo合金,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和N2吸附-脱附分析等对多孔合金的物相、形貌结构及孔径分布进行了表征,并通过线性扫描伏安、Tafel斜率、交流阻抗和循环伏安等方法测试了多孔合金电极的电催化析氢性能.结果显示,多孔合金电极材料在50 mA/cm2电流密度下析氢过电位随着Mo含量的增加先降低后升高,Ni2.5Mo2.5合金析氢活性最强,过电位为218 mV,析氢过程由Volmer-Heyrovsky步骤控制,交换电流密度为0.29 mA/cm2,经1000周循环后的极化曲线基本保持原状,50 mA/cm2电流密度下过电位增加3.67%,表现出优良的析氢稳定性.  相似文献   
10.
We present a combined quantum chemical and molecular dynamics study of cyclic and noncyclic water n-mers ([(H2O]n, n = 2–6) at four different temperatures and showcase that the dynamics of small water clusters can reproduce the known properties of bulk water reasonably well. We investigate the making and breaking of the water clusters by computing the hydrogen bond strengths, average lifetimes, and relative stabilities, which are important to understand the complex solution dynamics. We compare the behavior of water clusters in the gas phase and in the solution phase as well as the variation in the properties as a function of cluster size and highlight the notably more interesting cluster dynamics of the water trimer when compared to the other water clusters. © 2019 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号