首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9556篇
  免费   1422篇
  国内免费   1474篇
化学   10674篇
晶体学   299篇
力学   35篇
综合类   41篇
数学   12篇
物理学   1391篇
  2024年   9篇
  2023年   140篇
  2022年   193篇
  2021年   356篇
  2020年   553篇
  2019年   423篇
  2018年   370篇
  2017年   346篇
  2016年   526篇
  2015年   553篇
  2014年   594篇
  2013年   999篇
  2012年   641篇
  2011年   539篇
  2010年   496篇
  2009年   561篇
  2008年   606篇
  2007年   662篇
  2006年   609篇
  2005年   590篇
  2004年   526篇
  2003年   425篇
  2002年   253篇
  2001年   189篇
  2000年   174篇
  1999年   142篇
  1998年   131篇
  1997年   130篇
  1996年   137篇
  1995年   136篇
  1994年   83篇
  1993年   66篇
  1992年   63篇
  1991年   30篇
  1990年   27篇
  1989年   20篇
  1988年   25篇
  1987年   26篇
  1986年   19篇
  1985年   22篇
  1984年   10篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1977年   7篇
  1976年   6篇
  1975年   2篇
  1974年   2篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
2.
3.
ωB97XD/aug-cc-pVTZ calculations were performed for complexes of dihydrogen, cyclopropane, cyclobutane and cyclopentane, with simple proton donating species such as hydrogen fluoride, hydrogen chloride, water, hydrogen cyanide and acetylene. Numerous dependencies between geometrical, energetic and topological parameters of complexes considered were found, since various theoretical approaches were applied: Quantum Theory of ‘Atoms in Molecules’ (QTAIM), Natural Bond Orbital (NBO) method and energy decomposition analysis (EDA). It was confirmed that complexes of dihydrogen and cyclopropane are linked through the A−H…σ interactions that may be classified as hydrogen bonds. In the case of complexes of cyclobutane such hydrogen bonds are rather weak. Other type and also weak A−H…C hydrogen bonds are formed for complexes with cyclopentane.  相似文献   
4.
The molecular mechanism of the adhesion between silica surface and epoxy resin under atmospheric conditions is investigated by periodic density-functional-theory (DFT) calculations. Slab models of the adhesion interface were built by integrating a fragment of epoxy resin and hydroxylated (0 0 1) surface of α-cristobalite in the presence of adsorbed water molecules. Effects of adsorbed water on the adhesion interaction are evaluated on the basis of geometry-optimized structures, adhesion energies, and forces. Calculated results demonstrate that adsorbed water molecules significantly reduce both the adhesion energies and forces of the silica surface–epoxy resin interface. The reduction of adhesion properties can be associated with structural deformation of water molecules confined in the tight space between the adhesive and adherend as well as structural flexibility of the hydrogen-bonding network in the interfacial region during detachment of the epoxy resin from the hydrophilic silica surface. © 2018 Wiley Periodicals, Inc.  相似文献   
5.
A synergistic catalytic method combining photoredox catalysis, hydrogen‐atom transfer, and proton‐reduction catalysis for the dehydrogenative silylation of alkenes was developed. With this approach, a highly concise route to substituted allylsilanes has been achieved under very mild reaction conditions without using oxidants. This transformation features good to excellent yields, operational simplicity, and high atom economy. Based on control experiments, a possible reaction mechanism is proposed.  相似文献   
6.
Mo对脱合金制备的Ni-Mo电极骨架结构与析氢性能的影响   总被引:1,自引:0,他引:1  
采用快速凝固结合脱合金化方法制备了不同Mo含量的纳米多孔Ni-Mo合金,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和N2吸附-脱附分析等对多孔合金的物相、形貌结构及孔径分布进行了表征,并通过线性扫描伏安、Tafel斜率、交流阻抗和循环伏安等方法测试了多孔合金电极的电催化析氢性能.结果显示,多孔合金电极材料在50 mA/cm2电流密度下析氢过电位随着Mo含量的增加先降低后升高,Ni2.5Mo2.5合金析氢活性最强,过电位为218 mV,析氢过程由Volmer-Heyrovsky步骤控制,交换电流密度为0.29 mA/cm2,经1000周循环后的极化曲线基本保持原状,50 mA/cm2电流密度下过电位增加3.67%,表现出优良的析氢稳定性.  相似文献   
7.
We present a combined quantum chemical and molecular dynamics study of cyclic and noncyclic water n-mers ([(H2O]n, n = 2–6) at four different temperatures and showcase that the dynamics of small water clusters can reproduce the known properties of bulk water reasonably well. We investigate the making and breaking of the water clusters by computing the hydrogen bond strengths, average lifetimes, and relative stabilities, which are important to understand the complex solution dynamics. We compare the behavior of water clusters in the gas phase and in the solution phase as well as the variation in the properties as a function of cluster size and highlight the notably more interesting cluster dynamics of the water trimer when compared to the other water clusters. © 2019 Wiley Periodicals, Inc.  相似文献   
8.
Crystals of hypoxanthinium (6‐oxo‐1H,7H‐purin‐9‐ium) nitrate hydrates were investigated by means of X‐ray diffraction at different temperatures. The data for hypoxanthinium nitrate monohydrate (C5H5N4O+·NO3?·H2O, Hx1 ) were collected at 20, 105 and 285 K. The room‐temperature phase was reported previously [Schmalle et al. (1990). Acta Cryst. C 46 , 340–342] and the low‐temperature phase has not been investigated yet. The structure underwent a phase transition, which resulted in a change of space group from Pmnb to P21/n at lower temperature and subsequently in nonmerohedral twinning. The structure of hypoxanthinium dinitrate trihydrate (H3O+·C5H5N4O+·2NO3?·2H2O, Hx2 ) was determined at 20 and 100 K, and also has not been reported previously. The Hx2 structure consists of two types of layers: the `hypoxanthinium nitrate monohydrate' layers (HX) observed in Hx1 and layers of Zundel complex H3O+·H2O interacting with nitrate anions (OX). The crystal can be considered as a solid solution of two salts, i.e. hypoxanthinium nitrate monohydrate, C5H5N4O+·NO3?·H2O, and oxonium nitrate monohydrate, H3O+(H2O)·NO3?.  相似文献   
9.
Physisorption and chemisorption of hydrogen on solid-state materials are two fundamentally different interactions, both of which display advantages and drawbacks for hydrogen storage. It has been hypothesised that their combination by merging two classes of materials showing different sorption behaviour towards hydrogen in the same composite may synergistically combine their desirable properties. As representatives of such composites, palladium nanoparticles, nanoclusters, and single atoms have been encapsulated in a metal-organic framework matrix, embedded, or immobilised in its pores, respectively. In this minireview, we review advances on the understanding and potential applications of the combination of Pd with metal-organic framework matrices through the analysis of the nanocomposite materials’ interaction with hydrogen and sorption properties.  相似文献   
10.
Methanol decomposition is a promising method for hydrogen production. However, the performance of current catalysts for this process is not sufficient for commercial applications. In this work, methanol adsorption on the CeO2 low-index surfaces is studied by density functional theory (DFT). The results show that methanol always dissociates spontaneously on the (100) surface, whereas dissociation on the (110) surface is site-selective; dissociation does not occur at all on the (111) surface, where only weak physisorption is found. The results confirm that surfaces with higher energies are more catalytically active. Analysis of the surface geometries shows that the dominant factors for the dissociation of methanol are the degree of undercoordination and the charges of the surface ions. The adsorption energy of each methanol molecule decreases with increasing coverage and there is a transition threshold between dissociative and associative adsorption. The present work indicates that a strategy to design catalysts with high activity is to maximize exposure of surfaces on which the ions have a high degree of undercoordination and a strong tendency to donate/accept electrons. The results demonstrate the importance of appropriately selecting and controlling exposed facets and particle morphology for optimizing catalyst performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号