首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   15篇
  国内免费   22篇
化学   127篇
综合类   2篇
物理学   11篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   9篇
  2013年   13篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
1.
The histidine residue has an exceptional affinity for metals, but solution structure of its complexes are difficult to study. For zinc and nickel complexes, Raman and Raman optical activity (ROA) spectroscopy methods to investigate the link between spectral shapes and the geometry were used. The spectra were recorded and interpreted on the basis of ionic equilibria, molecular dynamics, ab initio molecular dynamics, and density functional theory. For zwitterionic histidine the dominant tautomer was determined by the decomposition of experimental spectra into calculated subspectra. An octahedral structure was found to prevail for the ZnHis2 complex in solution, in contrast to a tetrahedral arrangement in the crystal phase. The solution geometry of NiHis2 is more similar to the octahedral structure found by X-ray. The Raman and ROA structural determinations of metal complexes are dependent on extensive computations, but reveal unique information about the studied systems.  相似文献   
2.
Ni2+‐complexed poly(2‐acetamidoacrylic acid) (PAAA) hydrogel beads were developed for the site‐specific reversible immobilization and purification of the histidine‐tagged green fluorescent protein (His‐tagged GFP). PAAA hydrogel beads were prepared by photopolymerization, and significantly improved mechanical properties of PAAA hydrogel beads were observed in comparison with PAAA hydrogel from our previous study. Confocal laser scanning microscopy was used to determine the binding of His‐tagged GFP to the hydrogel beads in three‐dimensional space. Photoluminescence spectroscopy revealed 89% of binding efficiency of His‐tagged GFP to the Ni2+‐PAAA hydrogel beads, 51% of yielding recovery. The maximum binding capacity of His‐tagged GFP was estimated to be 0.45 µg/mg of Ni2+‐PAAA hydrogel beads. The recombinant His‐tagged GFP from the soluble fraction of E. coli BL21(DE3) cell lysates was purified with Ni2+‐PAAA hydrogel beads. The major advantage of the Ni2+‐PAAA hydrogel beads system was simple preparation procedures of producing the matrix, because PAAA hydrogel beads had relatively enhanced mechanical strength than soft hydrogels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
A novel series of histidine derived transition metal complexes were synthesized and characterized by multispectral techniques such as UV‐Vis., FT IR, EPR, NMR, ESI‐mass analysis and other physico‐chemical methods like elemental analysis, molar conductivity, magnetic susceptibility. The synthesized compounds were attempted for their biological prospective. The biological studies involved are DNA interaction (binding and damage), antimicrobial, antioxidant, antiproliferative and molecular docking. DNA interaction studies were carried out with the help of UV‐Vis absorption titration, viscosity measurement and cyclic voltammetric techniques which revealed that the synthesized compounds could interact with CT‐DNA through intercalative binding mode. A gel electrophoresis assay demonstrated the ability of complexes to cleave the supercoiled pUC18 DNA. The antioxidant property shows that the metal complexes have preferable ability to scavenge hydroxyl radical than the ligand. Moreover, the antimicrobial assay indicates that these complexes are good antimicrobial agents against various pathogens. Furthermore, the in vitro antiproliferative activities of the complexes were examined on HeLa, Hep G2 and NIH 3 T3 cell lines using an MTT assay. The morphological changes were investigated using Hoechst 33258 staining apoptosis assay. In addition, molecular docking studies were executed to considerate the nature of binding of the synthesized complexes with protein and DNA.  相似文献   
4.
Artificial implants and biomaterials lack the natural defense system of our body and, thus, have to be protected from bacterial adhesion and biofilm formation. In addition to the increasing number of implanted objects, the resistance of bacteria is also an important problem. Silver ions are well‐known for their antimicrobial properties, yet not a lot is known about their mode of action. Silver is expected to interact on many levels, thus the development of silver resistance is very difficult. Nevertheless, some bacteria are able to resist silver, even at higher concentrations. One such defense mechanism of bacteria against heavy‐metal intoxication includes an efflux system. SilE, a periplasmic silver‐binding protein that is involved in this defense mechanism, has been shown to possess numerous histidine functions, which strongly bind to silver atoms, as demonstrated by ourselves previously. Herein, we address the question of how histidine binds to silver ions as a function of pH value. This property is important because the local proton concentration in cells varies. Thus, we solved the crystal structures of histidine–silver complexes at different pH values and also investigated the influence of the amino‐acid configuration. These results were completed by DFT calculations on the binding strength and packing effects and led to the development of a model for the mode of action of SilE.  相似文献   
5.
Ruthenium is a platinoid that exhibits a range of unique chemical properties in solution, which are exploited in a variety of applications, including luminescent probes, anticancer therapies, and artificial photosynthesis. This paper focuses on a recently demonstrated ability of this metal in its +3 oxidation state to form highly stable complexes with tris (hydroxymethyl)aminomethane (H2NC(CH2OH)3, Tris‐base or T) and imidazole (Im) ligands, where a single RuIII cation is coordinated by two molecules of each T and Im. High‐resolution electrospray ionization mass spectrometry (ESI MS) is used to characterize RuIII complexes formed by placing a RuII complex [(NH3)5RuIICl]Cl in a Tris buffer under aerobic conditions. The most abundant ionic species in ESI MS represent mononuclear complexes containing an oxidized form of the metal, ie, [XnRuIIIT2 – 2H]+, where X could be an additional T (n = 1) or NH3 (n = 0‐2). Di‐ and tri‐metal complexes also give rise to a series of abundant ions, with the highest mass ion representing a metal complex with an empirical formula Ru3C24O21N6H66 (interpreted as cyclo(T2RuO)3, a cyclic oxo‐bridged structure, where the coordination sphere of each metal is completed by two T ligands). The empirical formulae of the binuclear species are consistent with the structures representing acyclic fragments of cyclo(T2RuO)3 with addition of various combinations of ammonia and dioxygen as ligands. Addition of histidine in large molar excess to this solution results in complete disassembly of poly‐nuclear complexes and gives rise to a variety of ionic species in the ESI mass spectrum with a general formula [RuIIIHiskTm (NH3)n ? 2H]+, where k = 0 to 2, m = 0 to 3, and n = 0 to 4. Ammonia adducts are present for all observed combinations of k and m, except k = m = 2, suggesting that [His2RuIIIT2 ? 2H]+ represents a complex with a fully completed coordination sphere. The observed cornucopia of RuIII complexes formed in the presence of histidine is in stark contrast to the previously reported selective reactivity of imidazole, which interacts with the metal by preserving the RuT2 core and giving rise to a single abundant ruthenium complex (represented by [Im2RuIIIT2 ? 2H]+ in ESI mass spectra). Surprisingly, the behavior of a hexa‐histidine peptide (HHHHHH) is similar to that of a single imidazole, rather than a single histidine amino acid: The RuT2 core is preserved, with the following ionic species observed in ESI mass spectra: [HHHHHH·(RuIIIT2)m ? (3m‐1)H]+ (m = 1‐3). The remarkable selectivity of the imidazole interaction with the RuIIIT2 core is rationalized using energetic considerations at the quantum mechanical level of theory.  相似文献   
6.
Zinc finger domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. The role of zinc in a DNA binding finger was considered purely structural due to the absence of redox chemistry in zinc. However, whether other metals e.g. Co(II) or Cd(II) can substitute Zn(II) is not settled. For an answer the detailed interaction of Co(II) and Cd(II) with cysteine methylester and histidine methylester has been investigated as a model for the zinc core in zinc fingers. The study was extended to different temperatures to evaluate the thermodynamic parameters associated with these interactions. The results suggest that zinc has a unique role.  相似文献   
7.
13C NMR spectra for the 1:1 complex between methyl N-benzoyl-l-leucyl-l-histidinate and the trimethyltin moiety in d-chloroform (CDC13), d4-methanol (CD3OD) dimethyl sulphoxide (DMSO) and d6-DMSO/H2O solvents are reported, and contrasted with those for the free ligand. The spectra are interpreted in terms of a variety of solution equilibria illustrating the nature of the interaction between the trimethyltin species and primarily the imidazole ring of the histidine residue. Evidence for the preferential stability of pentacoordinate solution structures about tin is presented.  相似文献   
8.
The intercalation of imidazole and some organic species containing the imidazole ring, between the layers of crystalline zirconium phosphate has been investigated. Fourteen new, well-ordered intercalation compounds are obtained with the batch procedure at r.t. and/or 60°C. A mechanism of formation of the various compounds is proposed on the basis of the interaction between the guest molecules (with their dimensions and geometries) and the free PO3OH groups available between the layers of the host. The new phases have been characterized by TG and X-ray methods.  相似文献   
9.
聚乙二醇(PEG)6000经亚氨基二乙酸(IDA)修饰后和CuSO4反应,形成PEG修饰聚合物PEG-(IDA-Cu)2 ,与吐温80、磷酸盐混合,构成液-固亲和萃取体系,直接从大豆蛋白匀浆中提取氨基酸.选定萃取条件为磷酸盐摩尔比n(K2HPO4)∶n(NaH2PO4)为4.8∶1,体系pH值 7.70,总盐浓度为1.60 mol·L-1;吐温80的体积分数为10.5%.结果表明该体系对大豆蛋白匀浆中氨基酸的二次萃取率为66.5%,用离子交换技术后继处理,得纯度较高的组氨酸.  相似文献   
10.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号