首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   19篇
  国内免费   11篇
化学   205篇
物理学   8篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   10篇
  2013年   22篇
  2012年   15篇
  2011年   15篇
  2010年   15篇
  2009年   15篇
  2008年   14篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   8篇
  2002年   10篇
  2001年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
1.
New isoindigo and di(thienyl)ethylene‐containing π‐extended conjugated polymers with different branched side chains were synthesized to investigate their physical properties and device performance in thin‐film transistors and photovoltaic cells. 11‐Butyltricosane (S3) and 11‐heptyltricosane (S6) groups were used as side‐chain moieties tethered to isoindigo units. The linking groups between the polymer backbone and bifurcation point in the branched side chain differ in the two polymers (i.e., PIDTE‐S3 and PIDTE‐S6 ). The polymers bearing S6 side chains showed much better charge transport behavior than those with S3 side chains. Thermally annealed PIDTE‐S6 film exhibited an outstanding hole mobility of 4.07 cm2 V?1 s?1 under ambient conditions. Furthermore, bulk heterojunction organic photovoltaic cells made from a blend film of PIDTE‐S3 and (6,6)‐phenyl C61‐butyric acid methyl ester demonstrated promising device performance with a power conversion efficiency in the range of 4.9–5.0%. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1226–1234  相似文献   
2.
The development of synthetic routes which lead to five new diisocyanide monomers with one or two phenolic groups is described. Their polymerization behavior is studied with Pd‐ and Ni‐based initiators, as well as under microwave irradiation. The polymerizability is mainly dominated by steric effects as is concluded from experiments using different protecting groups. Chiroptical properties of these new polymers are studied by CD‐spectroscopy. After deprotection, helically chiral poly(quinoxalin‐2,3‐diyl)s are obtained which display a Brønsted function attached to a stereolabile biaryl axis whose configuration should be influenced by the chiral polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1320–1329  相似文献   
3.
Heteroatom-containing polymers have strong potential as sustainable replacements for petrochemicals, show controllable monomer–polymer equilibria and properties spanning plastics, elastomers, fibres, resins, foams, coatings, adhesives, and self-assembled nanostructures. Their current and future applications span packaging, house-hold goods, clothing, automotive components, electronics, optical materials, sensors, and medical products. An interesting route to these polymers is the catalysed ring-opening copolymerisation (ROCOP) of heterocycles and heteroallenes. It is a living polymerization, occurs with high atom economy, and creates precise, new polymer structures inaccessible by traditional methods. In the last decade there has been a renaissance in research and increasing examples of commercial products made using ROCOP. It is better known in the production of polycarbonates and polyesters, but is also a powerful route to make N-, S-, and other heteroatom-containing polymers, including polyamides, polycarbamates, and polythioesters. This Review presents an overview of the different catalysts, monomer combinations, and polymer classes that can be accessed by heterocycle/heteroallene ROCOP.  相似文献   
4.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   
5.
Reactivity of isothiocynate moieties in the side chain of polymethacrylate with amine, alcohol, or thiol was investigated, and the reactions were applied to preparation of networked polymers. Isothiocyanate of polymer side chain rapidly reacted with amines without a catalyst, to give the corresponding thioureas. However, it did not react with alcohols or thiols under the same conditions. Using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst, addition of alcohols or thiols to the isothiocyanate proceeded smoothly. Addition of amines, alcohols, and thiols to isothiocyanates moiety contained in the side chain of polymethacrylate also proceeded readily with or without the catalyst, respectively, to effectively give the corresponding side chain modified polymers. Occurrence of these additions was confirmed by 1H NMR and IR measurements. Glass transition temperatures and thermal decomposition temperatures of the obtained polymers were investigated by differential scanning calorimetry and thermogravimetric analysis. Networked polymers were easily prepared by addition of 1,6‐hexamethylenediamine or hexamethylene glycol to the polymethacrylate having isothiocyanato groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1832–1842  相似文献   
6.
A new donor–acceptor (D–A) conjugated copolymer based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) was synthesized via a Stille cross‐coupling reaction. A highly conjugated thiophene‐based side group, tris(thienylenevinylene) (TTV), was incorporated into each BDT unit to generate the two‐dimensional D–A copolymer (PBDT‐TTV). An alkoxy‐substituted BDT‐based TPD copolymer (PBDT‐OR) was synthesized using the same polymerization method for comparison. PBDT‐TTV thin films produced two distinct absorption peaks. The shorter wavelength absorption (458 nm) was attributed to the BDT units containing the TTV group, and the longer wavelength band (567–616 nm) was attributed to intramolecular charge transfer between the BDT donor and the TPD acceptor. The highest occupied molecular orbital energy levels of PBDT‐OR and PBDT‐TTV were calculated to be −5.53 and −5.61 eV, respectively. PBDT‐TTV thin films harvested a broad solar spectrum covering the range 300–700 nm. A comparison with the PBDT‐OR films revealed stronger interchain π–π interactions in the PBDT‐TTV films and, thus, a higher hole mobility. A polymer solar cell device prepared using PBDT‐TTV as the active layer was found to exhibit a higher power conversion efficiency than a device prepared using PBDT‐OR under AM 1.5 G (100 mW/cm2) conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 653–660  相似文献   
7.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   
8.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx-Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co−S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx-Vo-S to exhibit much superior OER activity. FeCoOx-Vo-S exhibits a mass activity of 2440.0 A g−1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec−1, indicative of its excellent charge transfer rate. When FeCoOx-Vo-S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm−2 and 406.0 mA cm−2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   
9.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
10.
We have explored two novel comonomers, namely, 4,16‐dicarboxyl[2.2]paracyclophane and 5,5′,6,6′‐tetraamino‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobi[indane], for the synthesis of co‐polybenzimidazoles (co‐PBIs) with intrinsic porosity. Both these monomers possess twisted structures that can lead to “awkward” macromolecular shapes that cannot pack efficiently. The consequences of introducing these two monomers on the structure and properties of PBIs are reported. The random copolymers synthesized are amorphous and possess glass transition temperatures (Tgs) greater than 400 °C. Tg decreases with increasing comonomer content indicating an increase in fractional free volume. The copolymers have low surface area. TEM and BET measurements show evidence of mesopore formation. The copolymers show significant carbon dioxide adsorption. Single chain molecular dynamics simulation of 24‐mer repeat units shows intramolecular void spaces arising as a result of distorted polymer chain with reduced conformational mobility. These studies define a new synthetic strategy for “bottoms‐up” synthesis of PBIs with intrinsic porosity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1046–1057  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号