首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   26篇
  国内免费   5篇
化学   134篇
物理学   2篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2018年   2篇
  2017年   6篇
  2016年   8篇
  2015年   5篇
  2014年   13篇
  2013年   11篇
  2012年   9篇
  2011年   3篇
  2010年   4篇
  2009年   13篇
  2008年   8篇
  2007年   5篇
  2006年   12篇
  2005年   7篇
  2004年   11篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1973年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
1.
The introduction of Asn-linked glycans to nascent polypeptides occurs in the lumen of the endoplasmic reticulum of eukaryotic cells. After the removal of specific sugar residues, glycoproteins acquire signals in the glycoprotein quality control (GPQC) system and enter the folding cycle composed of lectin-chaperones calnexin (CNX) and calreticulin (CRT), glucosidase II (G-II), and UDP-Glc:glycoprotein glucosyltransferase (UGGT). G-II initiates glycoproteins’ entry and exit from the cycle, and UGGT serves as the “folding sensor”. This account summarizes our effort to analyze the properties of enzymes and lectins that play important roles in GPQC, especially those involved in the CNX/CRT cycle. To commence our study, general methods for the synthesis of high-mannose-type glycans and glycoproteins were established. Based on these, various substrates to analyze components of the GPQC were created, and properties of CRT, G-II, and UGGT have been clarified.  相似文献   
2.
The difference between the swiftlet white edible bird's nest from limestone caves versus house‐farmed ones, especially in response to high temperature and stewing time in water where the latter type would disintegrate readily, has been a puzzle for a long time. We show that edible bird's nests from the limestone caves have calcite deposits on the surface of the nest cement as compared to the house‐farmed nests which are built by swiftlets on timber planks. The micron and sub‐micron calcite particles are seen in SEM‐EDX and further characterized by ATR‐FTIR and Raman microspectroscopy. The calcite deposits make it possible for the cave nest to retain a gelatinous texture under the harsh retort conditions at 121 °C for 20 mins in commercial bottling. We show that house‐farmed nests can be soaked in CaCl2(aq) followed by rinsing with Na2CO3(aq) to grow the same calcite deposits on the nest cement with the same characteristic as cave nests. Therefore, there should no longer be a need to harvest cave nests, and we can better conserve the dwindling population and natural habitats of cave swiftlets.  相似文献   
3.
4.
The binding of vitamin B12 derivatives to human B12 transporter proteins is strongly influenced by the type and site of modification of the cobalamin original structure. We have prepared the first cobalamin derivative modified at the phosphate moiety. The reaction conditions were fully optimized and its limitations examined. The resulting derivatives, particularly those bearing terminal alkyne and azide groups, were isolated and used in copper‐catalyzed alkyne–azide cycloaddition reactions (CuAAC). Their sensitivity towards light revealed their potential as photocleavable molecules. The binding abilities of selected derivatives were examined and compared with cyanocobalamin. The interaction of the alkylated derivatives with haptocorrin was less affected than the interaction with intrinsic factor. Furthermore, the configuration of the phosphate moiety was irrelevant to the binding process.  相似文献   
5.
UDP‐glucose:glycoprotein glucosyltransferase (UGGT) plays a key role in recognizing folded and misfolded glycoproteins in the glycoprotein quality control system of the endoplasmic reticulum. UGGT detects misfolded glycoproteins and re‐glucosylates them as a tag for misfolded glycoproteins. A flexible model to reproduce in vitro folding of a glycoprotein in the presence of UGGT in a mixture containing correctly folded, folding intermediates, and misfolded glycoproteins is described. The data demonstrates that UGGT can re‐glucosylate all intermediates in the in vitro folding experiments, thus indicating that UGGT inspects not only final folded products, but also the glycoprotein folding intermediates.  相似文献   
6.
Glypiation is a common posttranslational modification of eukaryotic proteins involving the attachment of a glycosylphosphatidylinositol (GPI) glycolipid. GPIs contain a conserved phosphoglycan that is modified in a cell‐ and tissue‐specific manner. GPI complexity suggests roles in biological processes and effects on the attached protein, but the difficulties to get homogeneous material have hindered studies. We disclose a one‐pot intein‐mediated ligation (OPL) to obtain GPI‐anchored proteins. The strategy enables the glypiation of folded and denatured proteins with a natural linkage to the glycolipid. Using the strategy, glypiated eGFP, Thy1, and the Plasmodium berghei protein MSP119 were prepared. Glypiation did not alter the structure of eGFP and MSP119 proteins in solution, but it induced a strong pro‐inflammatory response in vitro. The strategy provides access to glypiated proteins to elucidate the activity of this modification and for use as vaccine candidates against parasitic infections.  相似文献   
7.
8.
《化学:亚洲杂志》2017,12(1):159-167
Functional pairing of cellular glycoconjugates with tissue lectins is a highly selective process, whose determinative factors have not yet been fully delineated. Glycan structure and modes of presentation, that is, its position and density, can contribute to binding, as different members of a lectin family can regulate degrees of responsiveness to these factors. Using a peptide repeat sequence motif of the glycoprotein mucin‐1, the principle of introducing synthetic (glyco)peptides with distinct variations in these three parameters to an array‐based screening of tissue lectins is illustrated. Interaction profiles of seven adhesion/growth‐regulatory galectins cover the range from intense signals with core 2 pentasaccharides and core 1 binding for galectins‐3 and ‐5 to a lack of binding for galectin‐1 and also the galectin‐related protein, which was included as a negative control. Remarkably, the two tandem‐repeat‐type galectins‐4 and ‐8 were distinguished by core 1 sialylation, as the two separated domains were. These results encourage further synthetic elaboration of the glycopeptide library and testing of the network of natural galectins and rationally engineered variants of the lectins.  相似文献   
9.
Sialylation is essential for a variety of cellular functions. Herein, we used bovine fetuin with three potential N-linked glycosylation sites containing complex-type glycan structures, four potential O-linked glycosylation sites and six potential phosphorylation sites as a model compound to develop a highly-efficient digestion strategy for sialylated glycoproteins and efficient enrichment strategy for sialylated glycopeptides using titanium dioxide. The former according to the process of alkaline phosphatase digestion followed by tryptic digestion and then proteinase K digestion could greatly improve the enzymatic efficiency on fetuin, and the latter could obviously enhance the enrichment efficiency for multisialylated glycopeptides using phosphoric acid solution as elution buffer. The mass spectra of the enriched glycopeptides derived from fetuin reveal that several series of the ion clusters with mass difference of 291 Da correspond to the presence of multisialylated glycopeptides. In addition, the approach was applied to characterize the sialylated status of α2-macroglobulin and transferrin, respectively, from the sera of healthy subjects and sex- and age-matched patients with thyroid cancer, and their spectra indicate that the change in the amount of the glycoforms containing different number of sialic acid (SA) residues from one glycosylation site may be used to differentiate between healthy subjects and cancer cases.  相似文献   
10.
Asparagine‐linked (N‐linked) sugar chains are widely found in the rough endoplasmic reticulum (ER), which has attracted renewed attention because of its participation in the glycoprotein quality control process. In the ER, newly formed glycoproteins are properly folded to higher‐order structures by the action of a variety of lectin chaperones and processing enzymes and are transported into the Golgi, while terminally misfolded glycoproteins are carried into the cytosol for degradation. A group of proteins related to this system are known to recognize subtle differences in the high‐mannose‐type oligosaccharide structures of glycoproteins; however, their molecular foundations are still unclear. In order to gain a more precise understanding, our group has established a strategy for the systematic synthesis of high‐mannose‐type glycans. More recently, we have developed “top‐down” chemoenzymatic approaches that allow expeditious access to theoretically all types of high‐mannose glycans. This strategy comprehensively delivered 37 high‐mannose‐type glycans, including G1M9–M3 glycans, and opened up the possibility of the elucidation of structure–function relationships with a series of high‐mannose‐type glycans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号